4,597 research outputs found
EEG Classification based on Image Configuration in Social Anxiety Disorder
The problem of detecting the presence of Social Anxiety Disorder (SAD) using
Electroencephalography (EEG) for classification has seen limited study and is
addressed with a new approach that seeks to exploit the knowledge of EEG sensor
spatial configuration. Two classification models, one which ignores the
configuration (model 1) and one that exploits it with different interpolation
methods (model 2), are studied. Performance of these two models is examined for
analyzing 34 EEG data channels each consisting of five frequency bands and
further decomposed with a filter bank. The data are collected from 64 subjects
consisting of healthy controls and patients with SAD. Validity of our
hypothesis that model 2 will significantly outperform model 1 is borne out in
the results, with accuracy -- higher for model 2 for each machine
learning algorithm we investigated. Convolutional Neural Networks (CNN) were
found to provide much better performance than SVM and kNNs
The state space for two qutrits has a phase space structure in its core
We investigate the state space of bipartite qutrits. For states which are
locally maximally mixed we obtain an analog of the ``magic'' tetrahedron for
bipartite qubits--a magic simplex W. This is obtained via the Weyl group which
is a kind of ``quantization'' of classical phase space. We analyze how this
simplex W is embedded in the whole state space of two qutrits and discuss
symmetries and equivalences inside the simplex W. Because we are explicitly
able to construct optimal entanglement witnesses we obtain the border between
separable and entangled states. With our method we find also the total area of
bound entangled states of the parameter subspace under intervestigation. Our
considerations can also be applied to higher dimensions.Comment: 3 figure
Maximizing nearest neighbour entanglement in finitely correlated qubit--chains
We consider translationally invariant states of an infinite one dimensional
chain of qubits or spin-1/2 particles. We maximize the entanglement shared by
nearest neighbours via a variational approach based on finitely correlated
states. We find an upper bound of nearest neighbour concurrence equal to
C=0.434095 which is 0.09% away from the bound C_W=0.434467 obtained by a
completely different procedure. The obtained state maximizing nearest neighbour
entanglement seems to approximate the maximally entangled mixed states (MEMS).
Further we investigate in detail several other properties of the so obtained
optimal state.Comment: 12 pages, 4 figures, 2nd version minor change
Impact of the pre-heat treatment on the crystallization of iron containing alumino-silicate glass fibres
On the mixing property for a class of states of relativistic quantum fields
Let be a factor state on the quasi-local algebra of
observables generated by a relativistic quantum field, which in addition
satisfies certain regularity conditions (satisfied by ground states and the
recently constructed thermal states of the theory). We prove that
there exist space and time translation invariant states, some of which are
arbitrarily close to in the weak* topology, for which the time
evolution is weakly asymptotically abelian
Mechanisms of spin-polarized current-driven magnetization switching
The mechanisms of the magnetization switching of magnetic multilayers driven
by a current are studied by including exchange interaction between local
moments and spin accumulation of conduction electrons. It is found that this
exchange interaction leads to two additional terms in the
Landau-Lifshitz-Gilbert equation: an effective field and a spin torque. Both
terms are proportional to the transverse spin accumulation and have comparable
magnitudes
Field dependence of magnetization reversal by spin transfer
We analyse the effect of the applied field (Happl) on the current-driven
magnetization reversal in pillar-shaped Co/Cu/Co trilayers, where we observe
two different types of transition between the parallel (P) and antiparallel
(AP) magnetic configurations of the Co layers. If Happl is weaker than a rather
small threshold value, the transitions between P and AP are irreversible and
relatively sharp. For Happl exceding the threshold value, the same transitions
are progressive and reversible. We show that the criteria for the stability of
the P and AP states and the experimentally observed behavior can be precisely
accounted for by introducing the current-induced torque of the spin transfer
models in a Landau-Lifschitz-Gilbert equation. This approach also provides a
good description for the field dependence of the critical currents
LICOR-Liquid Columns' Resonances
The aim of the experiment LICOR was the investigation of the axial resonances oi cylindrical liquid columns supported by equal circular coaxiaJ disks. In preparation ot the D-2 experiment a •heoreiical model has been developed, which exactly describes the small amplitude oscillations of finite cylindrical columns between coaxial circular disks. In addition, in terrestrial experiments the resonance frequencies of small liquid columns with up to 5 mm in diameter have been determined and investigations with density-matched liquids (silicon oil in a waierlmethanol mixture) have been performed. For the D-2 experiment LICOR the front disk and the rear disk lor use in the AFPM have been constructed and equipped with pressure sensors and the necessary electronics. The pressure exerted by the oscillating liquid column on trie supporting disks vsas as low as 10 Pa. Since the data downlink of the Materials Research Laboratory was just one signal oer second and channel, it was necessary to determine amplitude and phase of the pressure already in the LICOR disks. The D-2 experiment has been successfully performed. It has fully confirmed the theoretical models and remarkably supplements the experiments on small liquid columns and on density-matched columns
Hadrons in Dense Resonance-Matter: A Chiral SU(3) Approach
A nonlinear chiral SU(3) approach including the spin 3/2 decuplet is
developed to describe dense matter. The coupling constants of the baryon
resonances to the scalar mesons are determined from the decuplet vacuum masses
and SU(3) symmetry relations. Different methods of mass generation show
significant differences in the properties of the spin-3/2 particles and in the
nuclear equation of state.Comment: 28 pages, 9 figure
- …
