4,597 research outputs found

    EEG Classification based on Image Configuration in Social Anxiety Disorder

    Get PDF
    The problem of detecting the presence of Social Anxiety Disorder (SAD) using Electroencephalography (EEG) for classification has seen limited study and is addressed with a new approach that seeks to exploit the knowledge of EEG sensor spatial configuration. Two classification models, one which ignores the configuration (model 1) and one that exploits it with different interpolation methods (model 2), are studied. Performance of these two models is examined for analyzing 34 EEG data channels each consisting of five frequency bands and further decomposed with a filter bank. The data are collected from 64 subjects consisting of healthy controls and patients with SAD. Validity of our hypothesis that model 2 will significantly outperform model 1 is borne out in the results, with accuracy 66--7%7\% higher for model 2 for each machine learning algorithm we investigated. Convolutional Neural Networks (CNN) were found to provide much better performance than SVM and kNNs

    The state space for two qutrits has a phase space structure in its core

    Full text link
    We investigate the state space of bipartite qutrits. For states which are locally maximally mixed we obtain an analog of the ``magic'' tetrahedron for bipartite qubits--a magic simplex W. This is obtained via the Weyl group which is a kind of ``quantization'' of classical phase space. We analyze how this simplex W is embedded in the whole state space of two qutrits and discuss symmetries and equivalences inside the simplex W. Because we are explicitly able to construct optimal entanglement witnesses we obtain the border between separable and entangled states. With our method we find also the total area of bound entangled states of the parameter subspace under intervestigation. Our considerations can also be applied to higher dimensions.Comment: 3 figure

    Maximizing nearest neighbour entanglement in finitely correlated qubit--chains

    Full text link
    We consider translationally invariant states of an infinite one dimensional chain of qubits or spin-1/2 particles. We maximize the entanglement shared by nearest neighbours via a variational approach based on finitely correlated states. We find an upper bound of nearest neighbour concurrence equal to C=0.434095 which is 0.09% away from the bound C_W=0.434467 obtained by a completely different procedure. The obtained state maximizing nearest neighbour entanglement seems to approximate the maximally entangled mixed states (MEMS). Further we investigate in detail several other properties of the so obtained optimal state.Comment: 12 pages, 4 figures, 2nd version minor change

    On the mixing property for a class of states of relativistic quantum fields

    Full text link
    Let ω\omega be a factor state on the quasi-local algebra A\cal{A} of observables generated by a relativistic quantum field, which in addition satisfies certain regularity conditions (satisfied by ground states and the recently constructed thermal states of the P(ϕ)2P(\phi)_2 theory). We prove that there exist space and time translation invariant states, some of which are arbitrarily close to ω\omega in the weak* topology, for which the time evolution is weakly asymptotically abelian

    Mechanisms of spin-polarized current-driven magnetization switching

    Full text link
    The mechanisms of the magnetization switching of magnetic multilayers driven by a current are studied by including exchange interaction between local moments and spin accumulation of conduction electrons. It is found that this exchange interaction leads to two additional terms in the Landau-Lifshitz-Gilbert equation: an effective field and a spin torque. Both terms are proportional to the transverse spin accumulation and have comparable magnitudes

    Field dependence of magnetization reversal by spin transfer

    Full text link
    We analyse the effect of the applied field (Happl) on the current-driven magnetization reversal in pillar-shaped Co/Cu/Co trilayers, where we observe two different types of transition between the parallel (P) and antiparallel (AP) magnetic configurations of the Co layers. If Happl is weaker than a rather small threshold value, the transitions between P and AP are irreversible and relatively sharp. For Happl exceding the threshold value, the same transitions are progressive and reversible. We show that the criteria for the stability of the P and AP states and the experimentally observed behavior can be precisely accounted for by introducing the current-induced torque of the spin transfer models in a Landau-Lifschitz-Gilbert equation. This approach also provides a good description for the field dependence of the critical currents

    LICOR-Liquid Columns' Resonances

    Get PDF
    The aim of the experiment LICOR was the investigation of the axial resonances oi cylindrical liquid columns supported by equal circular coaxiaJ disks. In preparation ot the D-2 experiment a •heoreiical model has been developed, which exactly describes the small amplitude oscillations of finite cylindrical columns between coaxial circular disks. In addition, in terrestrial experiments the resonance frequencies of small liquid columns with up to 5 mm in diameter have been determined and investigations with density-matched liquids (silicon oil in a waierlmethanol mixture) have been performed. For the D-2 experiment LICOR the front disk and the rear disk lor use in the AFPM have been constructed and equipped with pressure sensors and the necessary electronics. The pressure exerted by the oscillating liquid column on trie supporting disks vsas as low as 10 Pa. Since the data downlink of the Materials Research Laboratory was just one signal oer second and channel, it was necessary to determine amplitude and phase of the pressure already in the LICOR disks. The D-2 experiment has been successfully performed. It has fully confirmed the theoretical models and remarkably supplements the experiments on small liquid columns and on density-matched columns

    Hadrons in Dense Resonance-Matter: A Chiral SU(3) Approach

    Get PDF
    A nonlinear chiral SU(3) approach including the spin 3/2 decuplet is developed to describe dense matter. The coupling constants of the baryon resonances to the scalar mesons are determined from the decuplet vacuum masses and SU(3) symmetry relations. Different methods of mass generation show significant differences in the properties of the spin-3/2 particles and in the nuclear equation of state.Comment: 28 pages, 9 figure
    corecore