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Abstract— The problem of detecting the presence of Social
Anxiety Disorder (SAD) using Electroencephalography (EEG)
for classification has seen limited study and is addressed with
a new approach that seeks to exploit the knowledge of EEG
sensor spatial configuration. Two classification models, one
which ignores the configuration (model 1) and one that exploits
it with different interpolation methods (model 2), are studied.
Performance of these two models is examined for analyzing 34
EEG data channels each consisting of five frequency bands and
further decomposed with a filter bank. The data are collected
from 64 subjects consisting of healthy controls and patients with
SAD. Validity of our hypothesis that model 2 will significantly
outperform model 1 is borne out in the results, with accuracy 6–
7% higher for model 2 for each machine learning algorithm we
investigated. Convolutional Neural Networks (CNN) were found
to provide much better performance than SVM and kNNs.

Index Terms— EEG, deep learning, classification

I. INTRODUCTION

Social Anxiety Disorder (SAD), world’s third largest
mental health care problem, affects 7% of the population
[Richards(2017)]. It is characterized by extreme fear and
avoidance of social situations and the fear of negative
evaluations from others [Leichsenring and Leweke(2017)].
The diagnosis process of SAD was first characterized
in 1980 by Diagnosis and Statistical Manual for Mental
Disorders (DSM-III). However, the criteria evolved and
the most recent description appears in the fifth edition
(DSM-5) [Hofmann and Otto(2017)]. In the field of
psychiatry, there is the need to pay considerable attention
to the reliability and quality of the diagnostic process of
SAD DSM-5 to give an accurate assessment of the disorder
[Kraemer et al.(2012)Kraemer, Kupfer, Clarke, Narrow, and Regier].

Electroencephalography (EEG) is a useful mechanism for
diagnosing mental disorders. EEG provides measurements
of brain activities aquired using electrodes placed over
the scalp. While other brain imaging techniques, such as
positron emission tomography (PET) and functional mag-
netic resonance imaging (fMRI), are used in diagnosis,
EEG has important attributes in that it captures the tem-
poral activity of the brain and is affordable compared with
other methods [Sanei and Chambers(2013)]. The EEG wave-
form is usually divided into five main frequency bands
[Abo-Zahhad et al.(2015)Abo-Zahhad, Ahmed, and Seha]:
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Delta (δ: up to 4 Hz) waves are generated during drowsiness
and are the slowest, Theta (θ: 4-8 Hz) waves are observed
during quiet focus or sleep, Alpha (α: 8 - 15 Hz) waves are
observed during relaxation with closed eyes, Beta (β: 15-32
Hz) waves observed during normal consciousness and active
thinking, and Gamma (γ: 32 Hz) associated with strong
electrical signals caused by visual stimulation or information
processing, learning, and perception. All the mentioned five
frequency bands of the EEG signals are used in the analysis
process for this study.

The use of EEG in SAD diagnosis has seen only
limited study. The visual detection of differences in the
EEG signals between SAD patient and control groups is
impractical since the EEG activity appears to be similar
in both. Therefore, automated detection using techniques
such as machine learning is usually employed, which could
lead to more precise diagnosis results and can be the first
step for better connectivity analysis, pattern recognition
process, and understanding treatment responses in SAD
[Moscovitch et al.(2011)Moscovitch, Santesso, Miskovic, McCabe, Antony, and Schmidt].

In the past, many classification algo-
rithms were devised for using EEG data
[Lotte et al.(2007)Lotte, Congedo, Lécuyer, Lamarche, and Arnaldi],
such as, linear discriminant analysis, SVM, neural networks,
nonlinear bayesian classifiers, kNN, hidden markov model,
combination of classifiers, and others. However, none
considered the spatial locations and configuration of the
EEG channel sensors as a means to possibly achieving
better accuracy in analysis or classification tasks. This was
a key driving factor in our research. Two classification
models, one which ignores the configuration (model 1) and
one that exploits it with different interpolation methods
(model 2), are considered in this study. We hypothesized
that model 2 will significantly outperform model 1. Validity
of our hypothesis is borne out in the results, with average
accuracy 7% higher for model 2 for each machine learning
algorithm we investigated. Convolutional Neural Networks
(CNN) were found to provide much better performance than
SVM and kNNs.

II. METHOD
A. EEG recording

The EEG data-set used in this paper was acquired in the
Department of Psychiatry at University of Illinois at Chicago
(UIC). The acquisition of multi-channel EEG is done using
an Electro-Cap with electrodes positioned at 34 different
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locations i.e. channels. The data are gathered from a total
of 64 subjects divided into control and SAD patients groups.
For this study, the brain activity being analyzed is at resting
state, without the introduction of stimuli or task instructions.
The duration of the EEG recording varies from 2-7 minutes.
The signals are sampled at 1024Hz sampling frequency.

B. Data Preprocessing

EEG data are complex, as multiple processes take place
simultaneously causing various artifacts and noise to appear,
such as eye movements and EMG artifacts. Hence, it needs
to be processed and cleaned for better interpolation during
analysis. EEG data preprocessing stages are implemented
using EEGLAB software. The frequencies of interest are in
the range of 1-50 Hz, covering the five different frequency
bands.

C. Data Analysis

Nonstationary phenomena are present in EEG data due to
the constant switching of the meta-stable states of neurons
assembling during brain functioning, causing signal changes
in the form of spikes and momentary events. In our data
analysis in time and frequency domains, each channel signal
is divided into windows in which the data are assumed
to be stationary. After testing multiple sizes of window
segments based on the sampling frequency and the statistical
properties, a window size of 5120 samples was found to yield
the best results for detection.

The analysis of the signal content of each of the five main
EEG frequency bands can be utilized to estimate subjects’
cognition and emotional states. A dyadic wavelet packet
transformation [Fliege(1994)] is used for the decomposition
of subbands corresponding to the five frequency bands. [0-4]
Hz for δ band, [4-8] Hz for θ, [8-16] Hz for α, [16-32] Hz
for β, and [32-52] Hz for γ.

The energy of the content of each windowed segment is
computed for the five frequency bands separately. The analy-
sis is based on the energy content of these signals represented
in two different ways: concatenation of the channels of the
five frequency bands and image-like 2D representation of
the EEG channel locations. The latter method is discussed
in Section II.D. It should be noted that the outputs of the
filter bank are ordered from highest frequency subband to
the lowest.

D. Image representation of the EEG data

The data are acquired using 34 electrodes placed over
different areas on the scalp, Frontal (F), Central (C) Temporal
(T), Parietal (P) and Occipital (O) as shown in Fig. 1.
It is hypothesized that the location of the channels can
provide improved detection accuracy in the analysis of the
data. To examine this hypothesis, two main data models are
examined. First, the 34 channels of the five frequency bands
are concatenated by creating a 34×5 energy matrix over each
window, without accounting for the location of the channel
electrodes. Second, a 3-D array of size 15×15×5 is created,
where the first two dimensions represent an image of 15×15

Fig. 1. Layout of 34 electrodes on scalp

pixels corresponding with the channels positioning over the
scalp while the third dimension represents the five frequency
bands. In the latter method, the locations that not exactly
correspond to any of the 34 channels are filled using different
interpolation techniques.

The layout of the channels’ location is given in Fig. 1.
To construct an image-like representation of the electrodes
layout, an image of size 15 × 15 was created. To fill in
the missing pixel energy values, the following interpolation
method was used [Eckstein(1989)]: an interpolated value e at
point x, only the samples ui = u(xi) for i = 1, ...ni, which
lay within a distance less than dmax from point x, are used
to calculate interpolated value using the following weighted
average.

u(x) =

∑ni

i=1 wi(x)ui∑ni

i=1 wi(x)
(1)

where wi(x) =
1

d(x,xi)
and d(x, xi) represents the distance

between points x and xi. This method is called Inverse
Distance Weighting (IDW). In areas where no energy values
exist within a distance of dmax i.e. ”Border Points” (BP) for
abbreviation, the nearest value is simply repeated. dmax is
chosen empirically from a set of different distances.

It should be noted that other interpolation meth-
ods were examined such as nearest neighbor interpo-
lation, bilinear interpolation, cubic spline interpolation
[Lehmann et al.(1999)Lehmann, Gonner, and Spitzer], and
zero insertion at the border points (BP) with zero. However,
they all result in inferior performance compared with the
method mentioned above. Table IV in Section IV summarizes
the average performance of the suggested methods. The
construction of the image in the second model is tested on
the main deep network structure (CNN) described in Section
III.B.

III. EXPERIMENTS

After the data are collected and preprocessed, two dif-
ferent models are used as previously discussed. In the first
model, the energy for the five frequency bands is calculated
separately in each window of size 5120 samples. Hence,



Fig. 2. Convolutional neural network structure

for each window an energy matrix of dimensions 34 × 5
is constructed. There are thirty four channels or electrodes
and five frequency bands. Each row in the matrix represents
one channel. The second model is based on the image
representation of the EEG data, as discussed in Section II.D.
For each window a 3D energy array of 15 × 15 × 5 is
built, where the third dimension represents the five frequency
bands. For both models, each matrix is considered as a single
sample for the training or testing data-set.

A. Acquisition of training and testing EEG data

To train the network, a stratified 8-fold cross-validation
is applied, the data are shuffled randomly and each fold
is made by preserving the percentage of subjects from the
two classes. 7 folds (56 subjects) are used for training and
validation (about 10% validation, 90% training) and the
remaining fold (8 subjects) is used for testing. The classifier
is trained 8 separate times. In each trial a different fold is
used for testing. Early stopping is applied by monitoring
the validation loss to avoid overfitting. In both models, for
every window of size N , an energy matrix is constructed and
considered as single sample, where N = 5120. The samples
are gathered for each of the training, validation and testing
sets by sliding a moving window of size N with no overlap
of windows. The choice of sliding N samples is made
empirically as it yields better results when compared with
other overlapping windows of shifts of N/4, N/2 and 3N/2.
In summary, the data set of each subject was divided into
multiple samples, and the samples collected for the training,
validation and testing sets will never overlap. Samples are
labeled 0 (negative) if collected from control group, and 1
(positive) if collected from SAD patients. The classification
accuracy is the percentage of subjects classified correctly.

For every trial, each testing subject is evaluated as follows:

prediction =

{
patient if xi = pi

ti
≥ Th

control else
(2)

where Th = 0.45, pi is number of samples classified as
positive for subject i, ti is total number of samples for subject
i. Since some of the EEG data contain unwanted signals, the
threshold was lowered from 0.5 to 0.45.

B. CNN Network Structure

Deep learning has significantly improved the performance
for many problems compared with other machine
learning algorithms [Deng et al.(2014)Deng, Yu, et al.].
Developing deep network-based solutions has been
found to be effective in many applications. CNNs

have turned out to be the most powerful deep
learning architectures for image-related problems
[Krizhevsky et al.(2012)Krizhevsky, Sutskever, and Hinton].
The input to the network is arrays of data containing energy
values of subband signals, in windows of size 5120. A
sequential model is built for this classification problem
as shown in Fig. 2. The first layer is a 2D convolution
with kernel size (convolution window) 3 × 3, 64 output
filters, and ReLu activation over the outputs, another 2D
convolution layer with the same parameters followed. This
is followed by a max-pooling layer with pool size of 2,
followed by dropout with rate=0.25. The input is then
flattened which is followed by a fully connected layer with
128 output dimension and ReLu activation. Another dropout
is done with rate=0.2 followed by final fully connected
layer with Softmax activation and output dimension that
equals to 2. Dropout is a regularization method that is
used to reduce over-fitting. Other networks with one or
more convolutional layers are also tested. However, all
produced an inferior performance compared with the
proposed network. The parameters of this network were
chosen using several different trials and the parameters that
yielded the best performance were selected. It should be
noted that batch normalization was applied to the input
and the CNN layers to reduce the internal covariate shift
[Ioffe and Szegedy(2015)].

IV. RESULTS

In this study, inputs constructed by the two main models
are both tested, by feeding them to different machine learning
algorithms or deep neural networks. Model 1 is built by
concatenating the channels of the five frequency bands
with no consideration for the spatial configuration of EEG
electrodes. Model 2 takes the electrode configuration over the
scalp into account. The two models are investigated for their
classification performance using SVM, kNN, and a proposed
CNN in Section III.B.

In the proposed CNN, the confusion matrices for Model
1 and Model 2 can be seen in Table I and Table II,
respectively. The confusion matrix summarizes the prediction
results. The first entry of the first column has the number of
actual positive (i.e., SAD patients) predicted as patients, the
second entry of the first column has the number of actual
patients predicted as negative (i.e., healthy subjects), etc. The
accuracy (ability to correctly classify a subject), sensitivity
(ability to correctly identify patients when SAD is present),
and specificity (ability to correctly identify control within
a healthy group) are all higher for the proposed approach



TABLE I
CONFUSION MATRIX - MODEL I

Model I Actual Condition
Positive Negative Accuracy = 80%

Predicted
Condition

Positive 26 7 Sensitivity = 81%

Negitive 6 25 Specifitty = 78%

TABLE II
CONFUSION MATRIX - MODEL II

Model II Actual Condition
Positive Negative Accuracy = 87%

Predicted
Condition

Positive 29 5 Sensitivity = 90%

Negitive 3 27 Specificity = 84%

(Model 2), with overall classification accuracy of 87% for
Model 2 and 80% for Model 1. Thus, Model 2 that takes
advantage of the location of the channels is found to provide
superior performance.

In this classification task the EEG input data are also fed
to SVM with radial basis kernel function (RBF) with kernel
parameter σ = 0.4 using LIBSVM tool. The parameters were
chosen by estimating the performance of SVM with different
kernels and hyper-parameters tuning using the validation set.
The data are also applied to k-NN with k=3, and to other deep
networks structures but the proposed network structure stood
out as superior in terms of overall classification accuracy,
as seen in Table III. It should be noted that, in all cases,
Model 2 gave significantly higher accuracy than Model
1, establishing the importance of 2D representation of the
spatial configuration of EEG sensors.

To represent the different channels as an image over the
scalp in the second model, a few interpolation methods are
tested, as mentioned in Section II.D. The average perfor-
mance of these methods is presented in Table IV. Showing
that Inverse Average Weighted interpolation yielded the best
results among the methods tried.

V. CONCLUSION

In this study, it is found experimentally that SAD patients
can be identified based on their EEG signals. Furthermore,
the spatial configuration of the EEG electrodes is used for
the first time in a classification task. When taking advantage
of the positions of the channels, the performance of the CNN
network shows 7% improvement in accuracy compared with
the same CNN in which configuration is ignored.
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