

Aalborg Universitet

Impact of the pre-heat treatment on the crystallization of iron containing aluminosilicate glass fibres

Pakosch, D.; Yue, Yuanzheng; Deubener, J.; Heide, G.

Publication date: 2007

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Pakosch, D., Yue, Y., Deubener, J., & Heide, G. (2007). Impact of the pre-heat treatment on the crystallization of iron containing alumino-silicate glass fibres. Poster session presented at Annual Meeting of German Society of Glass Technology, Aachen, Germany.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Impact of the pre-heat treatment on the crystallization of iron containing alumino-silicate glass fibres

D. Pakosch¹, Y. Yue², J. Deubener¹, G. Heide³

Abstract

Pre-heat treated alumino silicate glass fibres are known to exhibit improved mechanical properties for high temperature applications. To quantify this effect HT-fibres were pre-oxidised at different temperatures and for different durations and analysed by DSC with air or argon as reaction or protective gasses, SNMS and XRD. The pre-heat treatment causes the development of a crystalline surface layer. Comparisons of results show higher crystallisation temperatures when analysed by DSC in air and identified the source of a shoulder peak as a results of the air during the DSC upscan. Furthermore an increase of crystallisation temperatures with increasing pre-oxidation temperatures is observed.

¹Institute of Non-Metallic Materials, Clausthal University of Technology, Germany

²Department of Biotechnology Chemistry and Environmental Engineering, Aalborg University, Denmark

³Insitute of Mineralogy, TU Bergakademie Freiberg, Germany