72 research outputs found

    Modelling of geomagnetic induction in pipelines

    No full text
    International audienceGeomagnetic field variations induce telluric currents in pipelines, which modify the electrochemical conditions at the pipe/soil interface, possibly contributing to corrosion of the pipeline steel. Modelling of geomagnetic induction in pipelines can be accomplished by combining several techniques. Starting with geomagnetic field data, the geoelectric fields in the absence of the pipeline were calculated using the surface impedance derived from a layered-Earth conductivity model. The influence of the pipeline on the electric fields was then examined using an infinitely long cylinder (ILC) model. Pipe-to-soil potentials produced by the electric field induced in the pipeline were calculated using a distributed source transmission line (DSTL) model. The geomagnetic induction process is frequency dependent; therefore, the calculations are best performed in the frequency domain, using a Fourier transform to go from the original time domain magnetic data, and an inverse Fourier transform at the end of the process, to obtain the pipe-to-soil potential variation in the time domain. Examples of the model calculations are presented and compared to observations made on a long pipeline in the auroral zone

    Earth conductivity structures and their effects on geomagnetic induction in pipelines

    Get PDF
    Anomalous, large pipe-to-soil potentials (PSP) have been observed along a natural gas pipeline in eastern Ontario, Canada, where there is a major geological contact between the highly resistive rocks of the Precambrian Shield to the west and the more conductive Paleozoic sediments to the east. This study tested the hypothesis that large variations of PSP are related to lateral changes of Earth conductivity under the pipeline. Concurrent and co-located PSP and magnetotelluric (MT) geophysical data were acquired in the study area. Results from the MT survey were used to model PSP variations based on distributed-source transmission line theory, using a spatially-variant surface geoelectric field. Different models were built to investigate the impact of different subsurface features. Good agreement between modelled and observed PSP was reached when impedance peaks related to major changes of subsurface geological conditions were included. The large PSP could therefore be attributed to the presence of resistive intrusive bodies in the upper crust and/or boundaries between tectonic terranes. This study demonstrated that combined PSP-MT investigations are a useful tool in the identification of potential hazards caused by geomagnetically induced currents in pipelines

    Developments in HF Propagation Predictions to Support Communications with Aircraft on Trans-polar Routes

    Get PDF
    Commercial airlines began operations over polar routes in 1999 with a small number of proving flights. By 2014 the number had increased to in excess of 12,000 flights per year, and further increases are expected. For safe operations, the aircraft have to be able to communicate with air traffic control centres at all times. This is achieved by VHF links whilst within range of the widespread network of ground stations, and by HF radio in remote areas such as the Polar regions, the North Atlantic and Pacific where VHF ground infrastructure does not exist. Furthermore, the Russian side of the pole only has HF capability. This has created a demand for improved HF nowcasting and forecasting procedures to support the polar operations, which are the subject of this paper

    MODELLING SOLAR MAGNETIC FLUX AND IRRADIANCE DURING AND SINCE THE MAUNDER MINIMUM

    Get PDF
    Abstract. Using sunspot number as input, we construct a model for the evolution of magnetic flux from strong elements in active regions to weak remnants during the solar cycle and thence estimate the historical record of irradiance from the Maunder Minimum to the present. The magnetic flux model is a fragmentation cascade starting with strong-field elements, which fragment into weak-field elements and then into a background field. The model indicates the mean total irradiance during the Maunder Minimum was between 1 and 1.5 Wm −2 lower than it is at present

    Modelling electrified railway signalling misoperations during extreme space weather events in the UK

    Get PDF
    Space weather has the potential to impact ground-based technologies on Earth, affecting many systems including railway signalling. This study uses a recently developed model to analyse the impact of geomagnetically induced currents on railway signalling systems in the United Kingdom during the March 1989 and October 2003 geomagnetic storms. The March 1989 storm is also scaled to estimate a 1-in-100 year and a 1-in-200 year extreme storm. Both the Glasgow to Edinburgh line, and the Preston to Lancaster section of the West Coast Main Line are modelled. No “right side” failures (when unoccupied sections appear occupied) are suggested to have occurred during either storm, and the total number of potential “wrong side” failures (when occupied sections appear clear) is low. However, the modelling indicates “right side” and “wrong side” failures are possible on both routes during the 1-in-100 year and 1-in-200 year extreme storms, with the Glasgow to Edinburgh line showing more total misoperations than the Preston to Lancaster section of the West Coast Main Line. A 1-in-100 year or 1-in-200 year extreme storm would result in misoperations over an extended period of time, with most occurring over a duration of 2–3 h either side of the peak of the storm

    Near real-time input to a propagation model for nowcasting of HF communications with aircraft on polar routes

    Get PDF
    There is a need for improved techniques for nowcasting and forecasting (over several hours) HF propagation at northerly latitudes to support airlines operating over the increasingly popular trans-polar routes. In this paper the assimilation of real-time measurements into a propagation model developed by the authors is described, including ionosonde measurements and Total Electron Content (TEC) measurements to define the main parameters of the ionosphere. The effects of D-region absorption in the polar cap and auroral regions are integrated with the model through satellite measurements of the flux of energetic solar protons (>1 MeV) and the X-ray flux in the 0.1-0.8 nm band, and ground-based magnetometer measurements which form the Kp and Dst indices of geomagnetic activity. The model incorporates various features (e.g. convecting patches of enhanced plasma density) of the polar ionosphere that are, in particular, responsible for off-great circle propagation and lead to propagation at times and frequencies not expected from on-great circle propagation alone. The model development is supported by the collection of HF propagation measurements over several paths within the polar cap, crossing the auroral oval, and along the mid-latitude trough
    corecore