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Abstract. Assessing the geomagnetic hazard to power sys-
tems requires reliable modelling of the geomagnetically in-
duced currents (GIC) produced in the power network. This
paper compares the Nodal Admittance Matrix method with
the Lehtinen–Pirjola method and shows them to be mathe-
matically equivalent. GIC calculation using the Nodal Ad-
mittance Matrix method involves three steps: (1) using the
voltage sources in the lines representing the induced geoelec-
tric field to calculate equivalent current sources and summing
these to obtain the nodal current sources, (2) performing the
inversion of the admittance matrix and multiplying by the
nodal current sources to obtain the nodal voltages, (3) using
the nodal voltages to determine the currents in the lines and
in the ground connections. In the Lehtinen–Pirjola method,
steps 2 and 3 of the Nodal Admittance Matrix calculation
are combined into one matrix expression. This involves in-
version of a more complicated matrix but yields the currents
to ground directly from the nodal current sources. To cal-
culate GIC in multiple voltage levels of a power system, it
is necessary to model the connections between voltage lev-
els, not just the transmission lines and ground connections
considered in traditional GIC modelling. Where GIC flow to
ground through both the high-voltage and low-voltage wind-
ings of a transformer, they share a common path through the
substation grounding resistance. This has been modelled pre-
viously by including non-zero, off-diagonal elements in the
earthing impedance matrix of the Lehtinen–Pirjola method.
However, this situation is more easily handled in both the
Nodal Admittance Matrix method and the Lehtinen–Pirjola
method by introducing a node at the neutral point.

Keywords. Electromagnetics (numerical methods)

1 Introduction

Geomagnetic disturbances can have a detrimental influence
on the operation of the electric power transmission systems.
This was first observed during the Easter storm of 1940,
when power systems in the northeast of the US and Canada
experienced malfunctions of equipment (Davidson, 1940).
Major geomagnetic disturbances in 1958, 1972, 1982, 1989,
2003, and 2006 similarly caused problems for power systems
in different parts of the world (Boteler et al., 1998; Bolduc,
2002; Wik et al., 2009). Problems arise because the vari-
ations of the magnetic field induce electric currents in the
power transmission lines. These geomagnetically induced
currents (GIC) flow to ground at substations of the power
system, where they cause partial saturation of the power
transformers (Molinski, 2002; Kappenman, 2007). This pro-
duces increased power consumption and heating of the trans-
former and distortion of the alternating current (AC) wave-
form, which leads to a variety of effects on the power system,
such as mis-operation of protective relays, voltage stability
problems, and, in a worst-case scenario, power blackouts and
damage to transformers. In 1859, an extreme magnetic storm
created widespread problems for the technology of the time:
the telegraph system (Boteler, 2006). There is increased con-
cern that a repeat of such an extreme magnetic storm could
cause widespread problems for the supply of electricity. This
has prompted renewed efforts to precisely understand the ge-
omagnetic effects on power systems so as to make accurate
risk assessments and plans for mitigation.

Assessment of the geomagnetic hazard to power systems
requires estimates of the expected size of the geomagnetic
field variations and knowledge of the earth’s conductivity
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structure in the area of the power system. These are used to
calculate the geoelectric fields to which the power system
will be exposed. These geoelectric fields are then used as in-
put to a power-system model to calculate the flow of GIC
throughout the system and assess the impact on power trans-
formers and the operation of the power system as a whole.
Considerable work is being done on the size of the geomag-
netic field variations at different latitudes and the earth con-
ductivity structure in different geological regions and their
influence on GIC (Zheng et al., 2013). Likewise, work is
being done to assess the impact of GIC on power systems
(Kappenman, 2010; Jacobson et al., 2014). This paper is con-
cerned with the modelling of GIC.

Two main approaches have been used for modelling GIC.
One involves using power-system network calculations, ei-
ther as a separate programme (Foss and Boteler, 2006;
Boteler et al., 2014) or as part of commercial software pack-
ages (Overbye et al., 2012). This has been the basis for
most of the GIC calculations made by the power industry.
The other is the GIC modelling programme, presented by
Lehtinen and Pirjola (1985), which has been used extensively
in the geophysics community (Thomson et al., 2005; Wik
et al., 2008; Caraballo et al., 2013; Demiray et al., 2013;
Torta et al., 2012). Most studies so far have concentrated
only on modelling GIC in the highest-voltage lines, which,
because of their design, have lower resistances and so expe-
rience larger GIC. However, to more accurately assess the
GIC in a power network, it is necessary to include the GIC
flows at lower voltage levels and the flow between multiple
voltage levels. Also, for geomagnetic hazard assessments, it
is necessary to know that reliable GIC values are obtained
regardless of the modelling technique being used.

In this paper, we review the different approaches and ex-
amine their use for modelling GIC in multiple voltage lev-
els of a power system. Power-network calculations can be
made using the Mesh Impedance Matrix method or the Nodal
Admittance Matrix method, with the latter most commonly
used because of its greater computational efficiency. Here,
we first present the derivation of GIC modelling using the
Nodal Admittance Matrix method and the derivation of the
Lehtinen–Pirjola method, and show that they are equivalent.
We then examine how these methods can be applied to mod-
elling GIC in a network with multiple voltage levels. When
modelling GIC in a single high-voltage level, nodes in a net-
work are usually grounded through the transformers at the
substations, simplifying the GIC calculations. In contrast, in-
clusion of multiple voltage levels introduces nodes into the
network model that do not have a direct connection to the
ground. It is shown how this can be handled in each mod-
elling technique and used to calculate the GIC in different
types of transformers.

2 Circuit representation of a power system

High-voltage power-transmission networks use three-phase
AC with transformers to convert between voltage levels. The
transformer can use either delta-connected windings or Y-
connected windings. The delta-connected windings do not
have a connection to the ground and do not allow GIC to
flow, and so will not be considered further. In Y-connected
transformers, the windings for the three phases are connected
together at a neutral point, which is connected to ground, as
shown in Fig. 1. In normal operation the AC currents in the
three phases have the same amplitude but are 120◦ out of
phase and sum to zero at the neutral point, so there is nor-
mally no AC flow from the neutral point to ground. However,
during fault conditions, there may be a significant unbalance
in AC or lightning strikes can produce large currents in the
lines and transformers, and the neutral-ground connections
are there to provide a safe discharge path for these currents.
The neutral-ground connections also provide a path for GIC
to flow from the transformer windings to ground. A variety
of transformer configurations are possible: autotransformers,
two-winding Y-connected transformers (designated as Y–Y),
or transformers with a Y connection on the high-voltage side
and a delta connection on the low-voltage side (designated
as Y–1). In some cases (typically lower voltage windings),
the neutral point of Y windings may not be connected to the
ground, and no GIC will flow in these windings. Similarly,
delta windings do not have a connection to the ground and
so do not provide a path for GIC to flow. Thus, these circuit
considerations are not relevant for GIC studies and we will
concentrate on transformer winding configurations that allow
the flow of GIC.

Two types of transformer provide a path for GIC and
are illustrated in Fig. 1. In two-winding transformers, sep-
arate windings are used for the high-voltage and low-voltage
sides, while, in an autotransformer, the high-voltage and low-
voltage sides share a winding with the low-voltage connec-
tion made part way along the winding. Later in the paper, we
consider how to model GIC in both the low-voltage and high-
voltage parts of the power system. However, initially, we con-
sider GIC flow only in the high-voltage parts of the system.
This makes it easier to understand the basic concepts of GIC
modelling and enables easier comparison with the original
literature, which dealt with only a single voltage level.

To construct a network model for calculating GIC in a
power system, the first step is to note that the impedances of
each phase of the power system will be identical and so will
experience the same levels of GIC. Thus, we need only make
calculations for a single phase. This is often done by combin-
ing the parallel paths of the three-phase transmission lines
and transformer windings into equivalent combined values
by dividing the line resistances and transformer resistances
by 3. Currents from all three phases flow through the sub-
station grounding resistance,RG so this is already the ap-
propriate value to use in the combined circuit. The results of
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Figure 1. Three-phase transmission lines and substations with a
two-winding transformer and an authotransformer.

such modelling will give GIC values that are the sum of the
GIC in all three phases, so they have to be divided by 3 to
give the GIC per phase. The alternative approach is to make
model calculations for a single-phase circuit with resistance
values that are all 3 times those in the combined circuit. Thus,
the single-phase circuit uses the transmission line resistances
and transformer resistances directly and three times the sub-
station grounding resistance. The results in this case give the
GIC per phase directly.

Figure 2 shows two single-phase circuits for a power sys-
tem. The first, shown in Fig. 2a, is an impedance network
made up of the resistances of the transmission lines,rL , the
resistances of the transformer windings,rT, and connection
from the neutral point to the ground, 3rG, whererG is the ac-
tual substation grounding resistance. The driving force for
GIC is the electric fields in the power transmission lines
(Boteler and Pirjola, 1998), which are represented in the cir-
cuit by the voltage source,e, equal to the integral of the elec-
tric field along the length of the line. An alternative circuit
description of the power system is an admittance network, as
shown in Fig. 2b. The transformer admittances are given by
the inverse of the transformer resistance,yT = 1/rT, and the
admittance of the connection to the ground is 1/3rG = yG/3.
For the electric field in the transmission line, the voltage
source,e, in series with the transmission line impedance,rL
(Fig. 2a), is converted to the electrically equivalent current
source,j = e/rL , in parallel with the transmission line ad-
mittanceyL = 1/rL (Fig. 2b).

GIC calculations can be made using either circuit utilis-
ing the Mesh Impedance Matrix method for circuits as in
Fig. 2a, and the Nodal Admittance Matrix method and the
Lehtinen–Pirjola method for circuits as in Fig. 2b (Boteler,
2014; Lehtinen and Pirjola, 1985). The methods based on
the type of circuit shown in Fig. 2b are those most com-
monly used and will be considered here. Firstly, we present
the derivation of the Nodal Admittance Matrix method and
the Lehtinen–Pirjola method for calculating GIC and then
show that they are mathematically equivalent. Then, we show

Figure 2. Representation of geomagnetic induction in a power sys-
tem using:(a) impedance network and voltage sources, and(b) ad-
mittance network and current sources.

how these methods can be applied to model GIC in circuits
for multiple voltage levels of a power system.

3 Nodal Admittance Matrix method

The Nodal Admittance Matrix method uses a circuit model
comprised of admittances and current sources, as shown in
Fig. 3. Here, the admittances of the transformers and neutral-
ground connection shown in Fig. 2b have been combined to
give a single admittance from the high-voltage busbar (node)
to the ground at each substation. The admittances between
nodes represent the admittance of the transmission lines.

To derive the matrix equations for the network, we start by
applying Kirchhoff’s current law which states that the alge-
braic sum of the currents entering any node is zero, i.e. the
sum of currents entering on transmission lines equals current
flowing to ground. Thus, we can write an equation for any
nodei of the form
N∑

n=1

ink = ik n 6= k, (1)

whereN is the number of nodes,ink is the current from node
n to k, andik is the current to the ground from nodek. This
equation also applies if the node is ungrounded, but, in this
case,ik = 0. The current in a line is determined by the current
sourcejnk, the voltage difference,vn − vk, between nodes at
the ends of the line, and the admittanceynk of the line

ink = jnk + (vn − vk)ynk. (2)

Also summing the current sources directed into each node,

jk =

N∑
n=1

jnk. (3)
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Figure 3. Schematic of admittance network for modelling GIC.

Eq. (1) gives

jk +

N∑
n=1

(vn − vk)ynk = ik. (4)

At the nodes, the nodal voltagevk is related to the current to
the groundik by Ohm’s law

ik = vkyk. (5)

At ungrounded nodes,yk = 0 so ik = 0, regardless of the
value ofvk, as mentioned above.

Equations (4) and (5) involve both the nodal voltages,vk,
and the current to the ground from each node,ik, as un-
knowns. In the Nodal Admittance Matrix method the expres-
sion forik, from Eq. (5) is substituted into (4) to give an equa-
tion only involving the node voltagesvk as the unknowns:

jk +

N∑
n=1

(vn − vk)ynk = vkyk. (6)

Regrouping terms gives

jk = vkyk + vk

N∑
n=1

ynk−

N∑
n=1

vnynk. (7)

This can be written in matrix form

[J] = [Y] [V] , (8)

where [J] is the current source column matrix with elements

Jk = jk, (9)

and [Y] is the admittance matrix in which the diagonal ele-
ments are the sums of the admittances of all paths connected
to nodek, and the off-diagonal elements are the negative ad-
mittances of the connections between nodesk andn, i.e.

Ykk = yk +

N∑
n=1

ynk n 6= k, (10)

where we show matrices and matrix elements as upper case
to distinguish them from the circuit components in lower

case. Remembering thatyk = 0 at ungrounded nodes and
noting that the expression forYkk involves the admittances
of branches running from that node, the diagonal elements
Ykk in the matrix are non-zero for all nodes, grounded or un-
grounded.

The voltages of the nodes are then found by taking the
inverse of the admittance matrix and multiplying by the nodal
current sources

[V] = [Y]−1 [J] . (11)

These node voltages can then be substituted into Eqs. (2) and
(5) to give the currents in the branches and the currents to the
ground from each node.

4 Lehtinen–Pirjola technique

Matrix equations suitable for determining GIC in a
discretely-earthed system were independently derived by
Lehtinen and Pirjola (1985), hereafter referred to as LP. As
in the Nodal Admittance Matrix method, LP start with Kirch-
hoff’s law for the currents at a nodal point (LP Eq. 8):

ik =

N∑
n=1

ink = −

N∑
n=1

ikn, (12)

and relate the current in a line to the driving emf, the voltage
difference between the nodes at the ends of the line, and the
admittance of the line (LP Eq. 7):

ikn = ykn[ekn + (vk − vn)]. (13)

Substituting Eq. (13) into (12) gives (LP Eq. 9):

ik = −

N∑
n=1

ykn[ekn + (vk − vn)]. (14)

LP also sum the current sources directed into each node (LP
Eq. 13). When the path to the ground from each node has zero
resistance, the node voltages will be zero and the current in
the branches will be exactly equal to current sources. Thus,
the sum of the current sources is equal to the current that
flows to the ground in this case, and is referred to by LP as
“perfect earthing” current:

J e
k = −

N∑
n=1

eknykn n 6= k. (15)

Making this substitution in Eq. (14) gives

ik = J e
k −

N∑
n=1

(vk − vn)ykn n 6= k, (16)

which is the same as that which we obtained earlier in Eq. (4).
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Thus,

ik = J e
k − vk

N∑
n=1

ykn +

N∑
n=1

vnykn n 6= k. (17)

The first summation represents the dependence of currentik
on voltagevk, and so gives diagonal elements of a network
admittance matrix

Y n
kk =

N∑
n=1

ynk n 6= k. (18)

The second summation represents the dependence of current
ik on all the other nodal voltagesvk, and so gives the off-
diagonal elements of the network admittance matrix

Y n
kn = −ykn n 6= k. (19)

Introducing these elements then allows Eq. (17) to be written

ik = J e
k −

N∑
n=1

vnY
n
kn, (20)

where the summation is now made over alln from 1 to N .
This is the same as LP Eq. (11). This can be written in matrix
form[
Ie]

=
[
Je]

−
[
Yn

][
Vn

]
, (21)

where the elements of column matrix [Ie] are the currents
in, and the elements of column matrix [Vn] are the voltages
vn. It is at this point where the Nodal Admittance Matrix
method and the Lehtinen–Pirjola method take different paths.
LP make the substitution[
Vn

]
=

[
Ze][

Ie] , (22)

where
[
Ze

]
is the earthing impedance matrix. Thus,

vk =

N∑
n=1

Ze
knin. (23)

Substituting Eq. (22) into Eq. (21) gives a matrix equation
involving only the node to ground currents [Ie] as the un-
knowns[
Ie]

=
[
Je]

−
[
Yn

][
Ze][

Ie] . (24)

Gathering terms in
[
Ie

]
gives(

[1] +
[
Yn

][
Ze])[

Ie]
=

[
Je] , (25)

where [1] is the unit matrix. Equation (25) can be solved by
matrix inversion to give the currents flowing to ground (LP
Eq. 12):[
Ie]

=
(
[1] +

[
Yn

][
Ze])−1 [

Je] . (26)

5 Equivalence of the Lehtinen–Pirjola and Nodal
Admittance Matrix methods

The Lehtinen–Pirjola method and the Nodal Admittance Ma-
trix method are both derived from the same initial equations
so it would be expected that they are equivalent. However,
with the definitions of the grounding terms that are tradi-
tionally used in the two methods, this equivalence only holds
under a particular condition, although the definitions can be
modified to give a general equivalence. It should also be
noted that the network admittance matrix [Yn] used by LP is
not the same as the admittance matrix [Y] used in the Nodal
Admittance Matrix method.

To show the equivalence of the two methods, start with the
LP equation:[
Je]

=
(
[1] +

[
Yn

][
Ze])[

Ie] . (27)

Making the substitution from Eq. (22)[
Ie]

=
[
Ze]−1 [

Vn
]
, (28)

and gives[
Je]

=

([
Ze]−1

+
[
Yn

])[
Vn

]
. (29)

The earthing impedance matrix defines the voltage between
the nodes and a remote earth produced by currents flowing to
ground. In the general case, this includes diagonal elements
representing the voltage at nodei, associated with the current
flowing to ground from nodei, and off-diagonal elements
representing the voltage produced at nodei by currents flow-
ing to ground from other nodes. Such a situation can occur in
which current from one node produces a voltage drop in the
grounding resistance that affects the voltage at other nodes.
This requires the nodes to be very near each other, which
means, in practice, that they share the grounding connection
at a substation (Pirjola, 2008).

If the earthing current at any node does not affect the volt-
ages at the other nodes, [Ze] becomes diagonal with elements
equal to the earthing resistancesri of the nodes. In this case,
the inverse of [Ze] is simply the ground admittance matrix
[Ye] given by

Y e
ii = yi = 1/ri (30)

Y e
ij = 0 j 6= i,

and the LP Eq. (29) can be rewritten as an expression for
nodal voltages [Vn].[
Je]

=
([

Ye]
+

[
Yn

])[
Vn

]
(31)

TheY terms in brackets are simply separate matrices for the
admittance to the ground [Ye] (Eq. 30) and the admittance
between nodes [Yn] (Eqs. 18 and 19). The sum of these two
matrices is identical to the Nodal Admittance Matrix [Y],
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which combines both sets of admittances in the one matrix,
see Eq. (10). Thus,

[Y] =
[
Ye]

+
[
Yn

]
. (32)

Combining Eqs. (31) and (32) gives[
Je]

= [Y]
[
Vn

]
, (33)

which is the Eq. (8) obtained by the Nodal Admittance Ma-
trix method.

Thus, the LP and Nodal Admittance Matrix methods are
shown to be equivalent when the LP earthing impedance ma-
trix has off-diagonal elements equal to zero. When the LP
earthing impedance matrix has non-zero, off-diagonal ele-
ments an equivalent nodal admittance formulation can be ob-
tained by adopting a definition for the admittance matrix in-
volving [Ze]−1 instead of [Ye], which then gives Eq. (29) to
be written as Eq. (33).

There are three steps involved in calculating GIC using
the Nodal Admittance Matrix method. The first step is to use
the voltage sources in the lines representing the induced geo-
electric field to calculate equivalent current sources and sum
these to obtain the nodal current sources [Je]. The second
step is to perform the matrix inversion [Y]−1 and multiply
by [Je] to obtain the nodal voltages [Vn]. The third step is to
use the nodal voltages to determine the currents in the lines
and in the ground connections.

In the LP method, the second and third step of the Nodal
Admittance Matrix calculation are combined into one matrix
expression. This involves inversion of the more complicated
matrix in Eq. (25) but yields the currents to the ground [Ie]
directly from the nodal current sources [Je].

It is also possible to combine all three steps into one matrix
expression (Pirjola, 2007). Starting with Eq. (25) and substi-
tuting for [Ie] from Eq. (28) we obtain

[
Vn

]
=

([
Ze]−1

+
[
Yn

])−1 [
Je] . (34)

In matrix form, the elements of [Je] (Eq. 15) equal the diag-
onal elements of the product matrix [E][Yn], denoted by the
N × 1 column matrix diag(EYn). Thus, we can write

[
Vn

]
=

([
Ze]−1

+
[
Yn

])−1
diag

[
EYn

]
. (35)

Combining this with the relation between the nodal voltages
and currents, Eq. (28) gives

[
Ie]

=
[
Ze]−1

([
Ze]−1

+
[
Yn

])−1
diag

[
EYn

]
. (36)

The successive steps of calculating these matrix expressions,
i.e. calculating diag(EYn), performing the matrix inversion,
and multiplying by the appropriate admittance matrix, corre-
spond to the three steps described in using the Nodal Admit-
tance Matrix method.

6 Modelling GIC in multiple voltage levels

When modelling the GIC flow in multiple voltage levels of
a power system, it is also necessary to consider the flow
of GIC between voltage levels. The path for GIC flow be-
tween voltage levels is through the windings of the trans-
formers at each substation. The type of transformer used de-
termines the nature of the path for flow of GIC. Here, we con-
sider three types of substation: one with only ordinary two-
winding transformers, one with only autotransformers, and
one with a combination of the two. The details of these three
scenarios are presented below, and the next section shows
how to model the different scenarios.

6.1 Two-winding transformers

In the case of ordinary two-winding transformers, there are
separate windings from each voltage busbar (commonly ab-
breviated as “bus”) to the neutral point, as shown in Fig. 4.
The neutral point in this case is the junction between the two
windings and the path to ground through the grounding re-
sistance of the substation and so has to be included as a node
in the network. Thus, the circuit configuration for inclusion
in a network model would be as it is shown on the right-hand
side of Fig. 4, where windings in parallel have been com-
bined into a single component. The high-voltage (HV) bus
and low-voltage (LV) bus are each ungrounded nodes in this
network.

6.2 Autotransformers

With autotransformers, there is no direct connection between
the high-voltage bus and the neutral point. The series wind-
ing provides a connection between the high-voltage and low-
voltage buses, and the common (shunt) winding connects the
low-voltage bus to the neutral point (Fig. 5). As before, wind-
ings in parallel are combined to give the circuit configura-
tion on the right-hand side of Fig. 5. The neutral point is
connected to earth through the substation grounding resis-
tance. However, in this case, there is no branching at the neu-
tral point, i.e. any current flowing in the common winding
also flows through the grounding resistance, so the ground-
ing resistance and resistance of the common winding can
be combined, eliminating the need for a node at the neutral
point. Then, the LV bus has a direct connection to the ground
through this combined resistance and only the HV bus is rep-
resented by an ungrounded node in a network model.

6.3 Both two-winding transformers and
autotransformers

When two-winding transformers and autotransformers are in
use for the same voltage levels at a substation, there are con-
nections between all voltage levels and between those volt-
age levels and the neutral point, as shown in Fig. 6. The
series winding of the autotransformers connect the HV and
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Figure 4. Scenario 1. Substation with two-winding transformers
and equivalent admittances for inclusion in the network model.

Figure 5. Scenario 2. Substation with autotransformers and equiva-
lent admittances for inclusion in the network model.

LV buses, the HV windings of the two-winding transformers
connect the HV bus to the neutral point, and the LV windings
of the transformers and common windings of the autotrans-
formers connect the LV bus to the neutral point. As before,
all windings in parallel are combined into a single resistance
value to give the circuit configuration on the right-hand side
of Fig. 6. The neutral point is a branch point between the
connections from the HV and LV buses and the connection
to the ground and so has to be kept as a node in the network
model. Thus, both the HV bus and LV bus are ungrounded
nodes in the network model.

6.4 Modelling the different scenarios

Scenario 3, with both two-winding transformers and auto-
transformers, contains all the connections that can occur, so
we will develop the equations for this case. The two-winding
transformer scenario and the autotransformer scenario can
then be derived by deleting the appropriate connection in
each case. Consider the simple network shown in Fig. 7.
Here, the substation of Scenario 3 is connected to transmis-
sion lines that connect to two other substations with only a
single path to the ground.

Figure 6. Scenario 3. Substation with both transformers and auto-
transformers and equivalent admittances for the network model.

Applying Kirchhoff’s current law at each node, we equate
the sum of currents entering on transmission lines to the cur-
rent flowing to the ground

−i12 = i1, (37)

i12− i23− i24 = 0,

i23− i34− i35 = 0,

i24+ i34 = i4,

i35 = i5.

Substituting for the currents in terms of the current sources,
nodal voltages, and admittances, and summing the current
sources into each node, as in Eq. (7), the equations for each
node become

J1 = (y1 + y12)v1 − y12v2, (38)

J2 = −y12v1 + (y12+ y23+ y24)v2 − y23v3 − y24v4,

J3 = −y23v2 + (y23+ y34+ y35)v3 − y34v4 − y35v5,

J4 = −y24v2 − y34v3 + (y24+ y34+ y4)v4,

J5 = −y35v3 + (y35+ y5)v5,

where, in this example, because no current sources are con-
nected to node 4,J4 = 0.

This is an example of the matrix Eq. (8), shown earlier
with [J] = 5× 1 matrix, [Y] = 5× 5 matrix, [V] = 5× 1 ma-
trix. The voltages of the nodes are then found by taking the
inverse of the admittance matrix and multiplying by the nodal
current sources (Eq. 11). These node voltages can then be
substituted into Eqs. (2) and (5) to give the network currents.
This provides the solution for Scenario 3 with both trans-
formers and autotransformers shown in Fig. 6.

To obtain the solution for Scenario 1 with only a trans-
former we just need to sety23 = 0 in Eq. (38) and compute
a new matrix inversion. Similarly the solution for Scenario 2
with only autotransformers can also be obtained by modify-
ing Eq. (38), in this case settingy24 = 0. In Scenarios 1, 2,
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Figure 7. Network model for a substation, as in Scenario 3, con-
nected to transmission lines to substations with a single path to the
ground.

and 3, the connections between nodes 2, 3, and 4 represent
the transformer winding resistances at the same substation,
so there are no current sources in these branches.

7 Earthing impedance for a transformer

In the approach used by Lehtinen and Pirjola (1985), they
define an earthing impedance matrix [Z] that relates the volt-
ages between the nodes and a remote earth to the currents
flowing to or from ground at those nodes.

vk =

N∑
n=1

zknin (39)

As explained in Sect. 5, if the currents to ground from nodes
do not influence the voltages at other nodes, then the earthing
impedance matrix is simply a diagonal matrix with diagonal
elements equal to the earthing resistances from each node to
remote earth. However, if currents from other nodes do affect
the voltages, then non-zero, off-diagonal elements occur in
the earthing impedance matrix (Lehtinen and Pirjola, 1985).

The earthing impedance matrix provides the link between
the nodal voltage and the current flowing to ground from that
node. Consider the transformer shown in Fig. 8a. The high-
voltage bus is node 1 and the low-voltage bus is node 2. The
high- and low-voltage windings of the transformer have re-
sistancesrA andrB respectively and both connect to the sub-
station grounding resistancerg.

The relation between current and voltage for each path is
given by

v1 = i1(rA + rg) + i2rg, (40)

v2 = i2(rB + rg) + i1rg. (41)

Figure 8. Grounding connection for a transformer.(a) Sharing a
path through the grounding resistance and(b) with a node at the
neutral point.

This can be written in matrix form:[
v1
v2

]
=

[
rA + rg rg

rg rB + rg

][
i1
i2

]
. (42)

If rg = 0, then the earthing impedance matrix reduces to a
diagonal matrix. The inverse of a diagonal matrix is obtained
by replacing each element in the diagonal with its recipro-
cal. If rg 6= 0, then we must use the full formula to find the
inverse. The inverse of [Z] is given by

[Z]−1
=

[
Z22
|Z|

−Z12
|Z|

−Z21
|Z|

Z11
|Z|

]
, (43)

where the determinant ofZ is |Z| = Z11Z22− Z12Z21.
For the example above, the inverse of [Z] becomes

[Z]−1
=

[
rB+rg
|Z|

−rg
|Z|

−rg
|Z|

rA+rg
|Z|

]
, (44)

where|Z| = rArB + (rA + rB)rg.
This is not a practical formulation to use in the Nodal Ad-

mittance Matrix method. In this method, it is better to in-
troduce an extra node at the junction ofrA , rB, and rg, as
shown in Fig. 8b. Nodes 1 and 2 are now ungrounded. In the
Lehtinen–Pirjola method, this is dealt with by considering a
path to the ground for each node with a very high resistance
value,rL (shown as dashed lines in Fig. 8b). The relations
between voltages and currents to the ground from the three
nodes are now

v1 = i1rL, (45)

v2 = i2rL,

v3 = i3rg.

This can be written in matrix form: v1
v2
v3

 =

 rL 0 0
0 rL 0
0 0 rg

 i1
i2
i3

 . (46)
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This is the earthing impedance matrix and now contains no
non-zero, off-diagonal elements. The transformer resistances
rA andrB are now not part of the earthing impedance matrix
but will appear as branches in the network admittance ma-
trix. Because of this, the currents through these resistances
are designated asi1 and i2 in Eqs. (40), (41) and (42) and
Fig. 8a, and asi13 andi23 in Fig. 8b.i1 andi2 in Eq. (45) and
(46) and Fig. 8b are then just the currents through the added
connections to the ground and have values near zero because
of the high value ofrL . This is as it should be, because the
ground connections from nodes 1 and 2 in Fig. 8b are only
added because of the need to have a value in the earthing
impedance matrix used in the LP method. The ground con-
nections from nodes 1 and 2 are not needed in the Nodal
Admittance Matrix method.

8 Discussion

The equations derived for all of the scenarios considered
are consistent with the general matrix equations defined in
Eqs. (8)–(11). Thus, the general scheme will work for any
situation, provided that the right nodes and connections are
chosen that accurately represent the circuit scenario being
modelled. In Scenarios 1, 2, and 3, we include a node at
the neutral points of the transformers. This is needed if there
are two-winding transformers at the substation being mod-
elled. In Scenario 2, where there are only autotransformers,
the grounding resistance can be combined with the common
winding of the autotransformers and the node removed. It is
kept in this example for consistency with the other scenarios
considered. For simplicity nodes 1 and 5 in Fig. 7, represent-
ing other substations are shown with only a single path to
the ground. In practice, each of these substations could also
be represented by nodes for different voltage levels and the
neutral point. Including a node at the neutral point of a sub-
station provides flexibility in the modelling, in that a general
scheme can be used for any type of transformer. It has the
added advantage that the grounding resistance can be treated
separately in the modelling.

The mathematical methodology used here is no different
than that described previously. The difference is in how we
think about the network. The model is comprised of nodes
with branches between nodes and a connection to the ground
from the nodes. In traditional modelling, the branches are
the transmission lines and the connection to the ground is
the path through the transformers and grounding resistance
at each substation. Every transmission line is exposed to
the geomagnetic induction, so this is represented by a cur-
rent source in parallel with the admittance of each branch.
Now, with the introduction of nodes at the neutral points, the
branches include the transmission lines, as before, but also
the transformer windings at the substations. There are no cur-
rent sources associated with the latter branches. The nodes at
which the transformer windings connect to the transmission

lines have no direct ground connection. The nodes at the
neutral points have a ground connection that is simply the
grounding resistance of the substation.

Mäkinen (1993) is probably the first publication about a
GIC study that precisely considers two voltage levels. Mäki-
nen uses the Lehtinen–Pirjola technique for the Finnish 400
and 220 kV grids. Mäkinen’s approach is also briefly sum-
marised by Pirjola (2005). Because there are nodes that are
very close to each other, Mäkinen assigns non-zero values to
some off-diagonal elements of the earthing impedance ma-
trix. Recent numerical and theoretical studies, however, show
that, if a node is ungrounded, the off-diagonal elements of the
earthing impedance matrix associated with this node do not
play any role for GIC in the network. Thus, they can be set,
for example, equal to zero, as shown in Eqs. (45) and (46).
This is actually an observation that also indicates the full
equivalence between the Nodal Admittance Matrix method
and the Lehtinen–Pirjola technique, in practice. Thus, the
calculations and results presented by Mäkinen (1993) are
correct but unnecessarily complicated, regarding the earth-
ing impedance matrix.

Pirjola (2008) considers situations where two substations
are close, so that the current to the ground from one pro-
duces a voltage drop that influences the other substation. In
circuit terms, this means there is a connection between the
current paths from each substation to ground. This effect is
included in the Lehtinen–Pirjola method by off-diagonal el-
ements in the impedance matrix, although, in the situations
considered by Pirjola (2008), it was concluded that the off-
diagonal elements do not play a major role in practice. In
this paper, we have shown that an equivalent effect occurs
when there are paths for GIC flows through two or more
transformer windings that share a common path through the
substation grounding resistance, so that current through one
transformer winding produces a voltage drop that influences
the current flow through the other transformer windings. This
can also be modelled in the Lehtinen–Pirjola method by in-
cluding off-diagonal elements in the impedance matrix. It
is recommended, however, that any point at which current
paths join is represented by a node in the circuit. If this
is done, then there is no need for off-diagonal elements in
the Lehtinen–Pirjola impedance matrix and the circuit equa-
tions can be solved using either the Nodal Admittance Matrix
method or the Lehtinen–Pirjola method. This is illustrated in
Fig. 8. The circuit representation in Fig. 8a is not suitable
for use with the Nodal Admittance Matrix method but can
be modelled by the Lehtinen–Pirjola method with the use of
non-diagonal elements in the impedance matrix. However,
the same circuit, with the introduction of a node at the neu-
tral point (Fig. 8b), can be satisfactorily modelled using ei-
ther the Lehtinen–Pirjola method or the Nodal Admittance
Matrix method. Thus, either method can be used to model
different power-system configurations, provided that the cir-
cuit model is constructed with nodes at all places that are a
junction between paths where GIC flow.
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The methods described here show how GIC can be calcu-
lated for different windings of transformers. When a trans-
former has different values of GIC in its windings, an “ef-
fective GIC” can be calculated that gives the same degree of
transformer saturation as GIC in a single winding (Albertson
et al., 1981; Zheng et al., 2014). For both two-winding trans-
formers and autotransformers, the effective GIC is given by

Ieff =

∣∣∣∣NIH + IL

N

∣∣∣∣ , (47)

whereN = NH /NL = VH /VL is the turns ratio of the trans-
former.

This is applicable to autotransformers, as illustrated in
Fig. 5, or two-winding transformers, as illustrated in Fig. 4.
However, Chunming Liu (personal communication, 2014)
has pointed out that not all two-winding transformers have
neutral points on each side that are both grounded. In such
a case, the neutral points are not connected and on the un-
grounded side there is no path to the ground for GIC to flow,
so the GIC values in that winding will be zero.

The methodologies described above provide the tech-
niques for modelling GIC in a power system including
the GIC at different voltage levels and the GIC flow
through transformer windings between voltage levels. It has
been shown that the Nodal Admittance Matrix method and
the Lehtinen–Pirjola method are mathematically equivalent,
with both methods representing the power system as a net-
work of admittances. The Mesh Impedance Matrix method
and the Nodal Admittance Matrix method can be described
as “electrically equivalent” as they are based on different cir-
cuit representations that are electrically equivalent. However,
they cannot be easily compared mathematically as they are
based on different numbering schemes: the Mesh Impedance
Matrix method is based on loop number, while the Nodal
Admittance Matrix method and Lehtinen–Pirjola method are
based on node number. All the methods will give the same
values for GIC and they have been tested using a benchmark
model (Horton et al., 2012). The accuracy of GIC values ob-
tained for any real power network is now dependent on the
input values used for the magnetic field variations, earth con-
ductivity structure and power-system parameters, rather than
the modelling methodology.

9 Conclusions

It has been shown that the Nodal Admittance Matrix method
used in network modelling of GIC and the Lehtinen–Pirjola
method for modelling GIC are mathematically equivalent.
There are three steps involved in calculating GIC using the
Nodal Admittance Matrix method. The first step is to use
the voltage sources in the lines representing the induced geo-
electric field to calculate equivalent current sources and sum
these to obtain the nodal current sources [Je]. The second

step is to perform the matrix inversion [Y]−1 and multiply by
[Je] to obtain the nodal voltages [Vn]. The third step is to use
the nodal voltages to determine the currents in the lines and
in the ground connections. In the Lehtinen–Pirjola method,
the second and third step of the Nodal Admittance Matrix
calculation are combined into one matrix expression. This
involves inversion of a more complicated matrix but yields
the currents to the ground [Ie] directly from the nodal cur-
rent sources [Je].

Accurate modelling of geomagnetically induced currents
in power systems requires consideration of the GIC flows in
and between different voltage levels. This can be handled by
the standard Nodal Admittance Matrix and Lehtinen–Pirjola
methods. GIC flows to the ground through the high-voltage
and low-voltage windings of a transformer share a com-
mon path through the substation grounding resistance. This
may lead to non-zero, off-diagonal elements in the earthing
impedance matrix of the LP method. However, in both the
Nodal Admittance Matrix method and the Lehtinen–Pirjola
method, this is more easily included by introducing a node
at the neutral point. It is recommended that neutral points al-
ways be included as nodes in the network model, although
not required if there are only autotransformers at a substa-
tion, because this provides a more versatile and standardised
modelling scheme.
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