1,322 research outputs found

    Transitive factorizations of permutations and geometry

    Full text link
    We give an account of our work on transitive factorizations of permutations. The work has had impact upon other areas of mathematics such as the enumeration of graph embeddings, random matrices, branched covers, and the moduli spaces of curves. Aspects of these seemingly unrelated areas are seen to be related in a unifying view from the perspective of algebraic combinatorics. At several points this work has intertwined with Richard Stanley's in significant ways.Comment: 12 pages, dedicated to Richard Stanley on the occasion of his 70th birthda

    Predicting the effects of climate change on water yield and forest production in the northeastern United States

    Get PDF
    Rapid and simultaneous changes in temperature, precipitation and the atmospheric concentration of CO2 are predicted to occur over the next century. Simple, well-validated models of ecosystem function are required to predict the effects of these changes. This paper describes an improved version of a forest carbon and water balance model (PnET-II) and the application of the model to predict stand- and regional-level effects of changes in temperature, precipitation and atmospheric CO2 concentration. PnET-II is a simple, generalized, monthly time-step model of water and carbon balances (gross and net) driven by nitrogen availability as expressed through foliar N concentration. Improvements from the original model include a complete carbon balance and improvements in the prediction of canopy phenology, as well as in the computation of canopy structure and photosynthesis. The model was parameterized and run for 4 forest/site combinations and validated against available data for water yield, gross and net carbon exchange and biomass production. The validation exercise suggests that the determination of actual water availability to stands and the occurrence or non-occurrence of soil-based water stress are critical to accurate modeling of forest net primary production (NPP) and net ecosystem production (NEP). The model was then run for the entire NewEngland/New York (USA) region using a 1 km resolution geographic information system. Predicted long-term NEP ranged from -85 to +275 g C m-2 yr-1 for the 4 forest/site combinations, and from -150 to 350 g C m-2 yr-1 for the region, with a regional average of 76 g C m-2 yr-1. A combination of increased temperature (+6*C), decreased precipitation (-15%) and increased water use efficiency (2x, due to doubling of CO2) resulted generally in increases in NPP and decreases in water yield over the region

    Quantum curves for Hitchin fibrations and the Eynard-Orantin theory

    Get PDF
    We generalize the topological recursion of Eynard-Orantin (2007) to the family of spectral curves of Hitchin fibrations. A spectral curve in the topological recursion, which is defined to be a complex plane curve, is replaced with a generic curve in the cotangent bundle TCT^*C of an arbitrary smooth base curve CC. We then prove that these spectral curves are quantizable, using the new formalism. More precisely, we construct the canonical generators of the formal \hbar-deformation family of DD-modules over an arbitrary projective algebraic curve CC of genus greater than 11, from the geometry of a prescribed family of smooth Hitchin spectral curves associated with the SL(2,C)SL(2,\mathbb{C})-character variety of the fundamental group π1(C)\pi_1(C). We show that the semi-classical limit through the WKB approximation of these \hbar-deformed DD-modules recovers the initial family of Hitchin spectral curves.Comment: 34 page

    ABCD of Beta Ensembles and Topological Strings

    Full text link
    We study beta-ensembles with Bn, Cn, and Dn eigenvalue measure and their relation with refined topological strings. Our results generalize the familiar connections between local topological strings and matrix models leading to An measure, and illustrate that all those classical eigenvalue ensembles, and their topological string counterparts, are related one to another via various deformations and specializations, quantum shifts and discrete quotients. We review the solution of the Gaussian models via Macdonald identities, and interpret them as conifold theories. The interpolation between the various models is plainly apparent in this case. For general polynomial potential, we calculate the partition function in the multi-cut phase in a perturbative fashion, beyond tree-level in the large-N limit. The relation to refined topological string orientifolds on the corresponding local geometry is discussed along the way.Comment: 33 pages, 1 figur

    Enumeration of simple random walks and tridiagonal matrices

    Full text link
    We present some old and new results in the enumeration of random walks in one dimension, mostly developed in works of enumerative combinatorics. The relation between the trace of the nn-th power of a tridiagonal matrix and the enumeration of weighted paths of nn steps allows an easier combinatorial enumeration of the paths. It also seems promising for the theory of tridiagonal random matrices .Comment: several ref.and comments added, misprints correcte

    Ecosystem carbon 7 dioxide fluxes after disturbance in forests of North America

    Get PDF
    Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included stand-replacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon, Quebec, Saskatchewan, and Wisconsin) events, insect infestations (gypsy moth, forest tent caterpillar, and mountain pine beetle), Hurricane Wilma, and silvicultural thinning (Arizona, California, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most. Maximum carbon losses following disturbance (g C m−2y−1) ranged from 1270 in Florida to 200 in boreal ecosystems. Similarly, for forests less than 100 years old, maximum uptake (g C m−2y−1) was 1180 in Florida mangroves and 210 in boreal ecosystems. More temperate forests had intermediate fluxes. Boreal ecosystems were relatively time invariant after 20 years, whereas western ecosystems tended to increase in carbon gain over time. This was driven mostly by gross photosynthetic production (GPP) because total ecosystem respiration (ER) and heterotrophic respiration were relatively invariant with age. GPP/ER was as low as 0.2 immediately following stand-replacing disturbance reaching a constant value of 1.2 after 20 years. NEP following insect defoliations and silvicultural thinning showed lesser changes than stand-replacing events, with decreases in the year of disturbance followed by rapid recovery. NEP decreased in a mangrove ecosystem following Hurricane Wilma because of a decrease in GPP and an increase in ER
    corecore