We study beta-ensembles with Bn, Cn, and Dn eigenvalue measure and their
relation with refined topological strings. Our results generalize the familiar
connections between local topological strings and matrix models leading to An
measure, and illustrate that all those classical eigenvalue ensembles, and
their topological string counterparts, are related one to another via various
deformations and specializations, quantum shifts and discrete quotients. We
review the solution of the Gaussian models via Macdonald identities, and
interpret them as conifold theories. The interpolation between the various
models is plainly apparent in this case. For general polynomial potential, we
calculate the partition function in the multi-cut phase in a perturbative
fashion, beyond tree-level in the large-N limit. The relation to refined
topological string orientifolds on the corresponding local geometry is
discussed along the way.Comment: 33 pages, 1 figur