8,502 research outputs found
On the number of trees with n terminal nodes
Number of trees with arbitrary number of terminal node
Outline bibliography, and KWIC index on mechanical theorem proving and its applications
Bibliography and KWIC index on mechanical theorem proving and its application
Statistics of the Island-Around-Island Hierarchy in Hamiltonian Phase Space
The phase space of a typical Hamiltonian system contains both chaotic and
regular orbits, mixed in a complex, fractal pattern. One oft-studied phenomenon
is the algebraic decay of correlations and recurrence time distributions. For
area-preserving maps, this has been attributed to the stickiness of boundary
circles, which separate chaotic and regular components. Though such dynamics
has been extensively studied, a full understanding depends on many fine details
that typically are beyond experimental and numerical resolution. This calls for
a statistical approach, the subject of the present work. We calculate the
statistics of the boundary circle winding numbers, contrasting the distribution
of the elements of their continued fractions to that for uniformly selected
irrationals. Since phase space transport is of great interest for dynamics, we
compute the distributions of fluxes through island chains. Analytical fits show
that the "level" and "class" distributions are distinct, and evidence for their
universality is given.Comment: 31 pages, 13 figure
On the Spectrum of the Resonant Quantum Kicked Rotor
It is proven that none of the bands in the quasi-energy spectrum of the
Quantum Kicked Rotor is flat at any primitive resonance of any order.
Perturbative estimates of bandwidths at small kick strength are established for
the case of primitive resonances of prime order. Different bands scale with
different powers of the kick strength, due to degeneracies in the spectrum of
the free rotor.Comment: Description of related published work has been expanded in the
Introductio
Extent and mechanism of sealing in transected giant axons of squid and earthworms
Transected axons are often assumed to seal at their cut
ends by the formation of continuous membrane barriers that
allow for the restoration of function in the axonal stumps.
We have used several electrophysiological measures (membrane
potential, input resistance, injury current density) and
several morphological measures (phase-contrast, video-enhanced
differential interference contrast, light, and electron
microscopies) of living and fixed material to assess the extent
and mechanism of sealing within hours after transecting
giant axons of squid (Loligo pealeiand Sepioteuthis lessoniana)
and earthworms (Lumbricus terrestris). Our electrophysiological
data suggest that the proximal and distal ends
of transected squid giant axons do not completely seal within
2.5 hr in physiological saline. In contrast, the same set of
measures suggest that proximal and distal ends of transected
earthworm giant axons seal within 1 hr in physiological
saline. Our morphological data show that the cut ends
of both squid and earthworm axons constrict, but that a 20-
70-am-diameter opening always remains at the cut end that
is filled with vesicles. Axonal transection induces the formation
of vesicles that are observed in the axoplasm within
minutes in standard salines and that rapidly migrate to the
cut ends. These injury-induced vesicles are loosely packed
near the cut ends of squid giant axons, which do not functionally
seal within 2.5 hr of transection. In contrast, vesicles
formed a tightly packed plug at the cut ends of earthworm
medial giant axons, which do functionally seal within 1 hr of
transection in physiological saline. Since we detect no single
continuous membrane that spans the cut end, sealing does
not appear to occur by the fusion of constricted axolemmal
membrane or the formation of a membranous partition at the
cut end. Rather, our data are consistent with the hypothesis
that a tightly packed vesicular plug is responsible for sealing
of earthworm giant axons.This work was supported in part by NIH Grant NS31256 and ONR Grant N00014-90-J-1137 to H.M.F., an NIAAA fellowship to T.L.K., and an ATP grant to G.D.B.Neuroscienc
Spin Diffusion in Double-Exchange Manganites
The theoretical study of spin diffusion in double-exchange magnets by means
of dynamical mean-field theory is presented. We demonstrate that the
spin-diffusion coefficient becomes independent of the Hund's coupling JH in the
range of parameters JH*S >> W >> T, W being the bandwidth, relevant to colossal
magnetoresistive manganites in the metallic part of their phase diagram. Our
study reveals a close correspondence as well as some counterintuitive
differences between the results on Bethe and hypercubic lattices. Our results
are in accord with neutron scattering data and with previous theoretical work
for high temperatures.Comment: 4.0 pages, 3 figures, RevTeX 4, replaced with the published versio
Particle Acceleration, Magnetic Field Generation, and Associated Emission in Collisionless Relativistic Jets
Nonthermal radiation observed from astrophysical systems containing
relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray
bursts (GRBs), and Galactic microquasar systems usually have power-law emission
spectra. Recent PIC simulations using injected relativistic electron-ion
(electro-positron) jets show that acceleration occurs within the downstream
jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., the Buneman instability,
other two-streaming instability, and the Weibel instability) created in the
shocks are responsible for particle (electron, positron, and ion) acceleration.
The simulation results show that the Weibel instability is responsible for
generating and amplifying highly nonuniform, small-scale magnetic fields. These
magnetic fields contribute to the electron's transverse deflection behind the
jet head. The ``jitter'' radiation from deflected electrons has different
properties than synchrotron radiation which assumes a uniform magnetic field.
This jitter radiation may be important to understanding the complex time
evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and
supernova remnants.Comment: 4 pages, 3 figures, contributed talk at the workshop: High Energy
Phenomena in Relativistic Outflows (HEPRO), Dublin, 24-28 September 2007.
Fig. 3 is replaced by the correct versio
Spin Dynamics of a Canted Antiferromagnet in a Magnetic Field
The spin dynamics of a canted antiferromagnet with a quadratic spin-wave
dispersion near \vq =0 is shown to possess a unique signature. When the
anisotropy gap is negligible, the spin-wave stiffness \dsw (\vq, B) =
(\omega_{\vq}-B)/q^2 depends on whether the limit of zero field or zero
wavevector is taken first. Consequently, \dsw is a strong function of
magnetic field at a fixed wavevector. Even in the presence of a sizeable
anisotropy gap, the field dependence of both \dsw and the gap energy
distinguishes a canted antiferromagnet from a phase-separated mixture
containing both ferromagnetic and antiferromagnetic regions.Comment: 10 pages, 3 figure
Effect of noise for two interacting particles in a random potential
We investigated the effect of noise on propagation of two interacting
particles pairs in a quasi one--dimensional random potential. It is shown that
pair diffusion is strongly enhanced by short range interaction comparing with
the non--interacting case.Comment: 8 Latex pages + 3 postscript figures uu- compressed submitted to
Europhysics Letter
- …
