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The enumeration of trees with an arbitrary number, n ,  o f  terminal 

Three types of trees are considered; trees with a t  nodes i s  explored. 

least  two branches from a l l  b u t  termjnal nodes, trees with a t  least  two 

b u t  no more t h a n  m branches from a l l  b u t  terminal nodes, and trees w i t h  

exactly m branches from a l l  b u t  terminal nodes. The las t  type of tree 

in this l i s t ,  which we call a "complete m-ary tree",  receives the major 

emphasis of the paper. Two approaches are pursued in the development 

of explicit  formulae which give the number of complete m-ary trees with 

n terminal nodesg for a rb i t ra ry  m and n .  

the more conventi onal 1 i ne o f  generating functi ons e 

generating function for m-ary trees w i t h  n terminal nodes. The gener- 

ating function i s  a simple generalization of the result given in Knuth  

[219 for binary trees. 

The f i r s t  approach i s  along 

We obtain the 

The second approach takes a different tack. A tree grammar i s  

introduced which generates the complete rn-ary trees as linear strings 

of 1 ' s  and 0 's .  

tree grammar specified by Scoins [4], for binary trees. 

notion of a syntax recognizer, theorems are proved which give the num- 

ber o f  strings ( in  the language defined by the tree grammar) of length 

n+k for arbitrary n and k which have a t  least  k terminal nodes. 

i s  done for binary trees, and then for the general case o f  m-ary trees. 

The explicit  formulae sought are then derived as a special case o f  the 

theorems, Ne also specify another formula for complete m-ary trees 

which we believe t o  be valid, b u t  for which we have no t  yet found a 

proof. 

The tree grammar i s  a simple generalization o f  the 

Using the 

This 

The result i s  provided since i t  i s  several orders o f  magnitude 



faster  in computing the number of trees t h a n  the other derived formu- 

lae. 

An appendix l i s t s  several of the values of the number of complete 

m-ary trees for alternative values of m. 

grams used t o  compute these values are also included. 

The l is t ings of computer pro- 

In considering the number of trees w i t h  a t  least  two branches from 

a l l  b u t  terminal nodes, the method of generating functions was used t o  

derive a formula for  the number o f  such trees w i t h  n terminal nodes. 

The results obtained for the complete m-ary trees provide upper 

bounds on the number of parse trees which may be constructed for 

strings from certain classes of context-free languages. 
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Tree structures play an important role i n  many areas of computer 

science. For example, i n  the area of a r t i f i c i a l  intelligence one 

often deals with search trees or proof t rees9 while i n  the area of 

language processing, one often deals w i t h  parse trees. I t  i s  useful 

to  obtain bounds on the number of trees of a given size which may be 

generated d u r i n g  a process, for this  often lends some i n s i g h t  into the 

computational complexity of the process or the associated memory 

requi rements. 

the maximum time and space which may be required to  recognize a string 

of given length from some language. 

tional to  the length of the i n p u t  s tr ing raised to  some power. 

context-free language, the time required to recognize a string i s  pro- 

portional t o  n3, where n i s  the number of symbols i n  the str-ing [1]* 

The recognition process implicity contains a l l  parse trees. 

sometimes of interest  t o  consider the number of parse trees t h a t  are 

implicitly contained for strings of a given length. 

Parsing algorithms normally have associated w i t h  them 

These bounds are usually propor- 

For a 

I t  i s  

In this paper, we consider the enumeration of trees based upon 

the number of terminal nodes that  the trees may contain. Three types 

of trees are considered. In Section 3 we consider the enumeration of 

m-ary trees w i t h  n terminal nodes which have exactly m branches a t  a l l  

b u t  the terminal nodes. This type of tree,  which we call a complete 

m-ary tree i s  i n  one-to-one correspondence w i  t h  the representati on of 

an n-ary function or  relation as the composition o f  m-ary functions o r  

relations. For example, there are three dis t inct  3-ary trees w i t h  five 

terminal nodes. The correspondence of these trees w i t h  the three 

1 



possible representations of R(a,b,c,d,e), a fivewary relation, as the 

composition of ternary relations R1 and R2 I s  shown in Figure 1. 

Figure 1 

Relati on-Tree Correspondence 

The linear strings shown in Figure 1 are simply the preorder [2] re- 

presentation of the tree,  i f  we remove the parentheses and commas. 

Furthermore, since the scope of each relation i s  three, a l l  parentheses 

and commas may be deleted from the forms without causing any ambiguity. 

I t  i s  therefore evident t h a t  the problem of determining the number o f  

ways an n-ary relation can be represented as the composition o f  m-ary 

relations i s  equivalent t o  the problem of determining the number of 

complete m-ary trees with n terminal nodes 

the approach t o  tree enumeration taken in Section 3.2. 

This observation motivates 

In Section 4, we consider the enumeration of trees with n termin- 

al nodes which have a t  least  two branches from al l  b u t  the terminal 

nodes. 

in Section 5, we consider the enumeration of trees with n terminal 

nodes which have a t  least  two branches from a l l  b u t  the terminal nodes 

b u t  which have a t  most m branches from any node. 

This i s  the most general type o f  tree we consider. Finally, 
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The results obtained for the complete rn-ary trees provide upper 

bounds on the number of parse trees which may be obtained f o r  certain 

classes of context-free languages. 

3 



2. Defi n i  ti.ons 

By a r tree i s  meant a graph consisting of a s e t  o f  points (nodes) 

and lines (edges) connecting these points such t h a t  between every p a i r  

of nodes, a and b ,  there i s  exactly one sequence o f  edges (called a 

path) which may be traversed i n  going from a to  b. 

placed on such a path, namely, that  no two consecutive edges i n  the 

sequence may be the same. 

the root. 

be ing  the upper most node i n  the tree, 

o f  trees in which the root of each i s  labeled r. 

One r e s t r i c t i m  i s  

One particular node of each tree i s  called 

I t  i s  distinguished from the other nodes pictorially by 

In Figure 2 are given examples 

r r r 

... 

FigLaTe, 2 ,  

Examples of Trees 

The way i n  which we draw trees is  t o  have every node except the 

root entered from above by exactly one edge. 

from above by any edge. 

The root i s  not entered 

An wary tree i s  a tree i n  which each node i s  connected by an 

edge to  a t  most m nodes a t  a lower level ( i ts  descendents) i n  the 

tree. 

an 3-ary (ternary) tree. 

In Figure 2 ,  (a) and ( b )  are 2-ary (binary) trees,  while (c)  i s  

An ordered tree is  a tree i n  which the horizontal ordering o f  the 

4 
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descendents o f  each node help t o  characterize the tree. 

Fi gure 2,  ( a )  and (b )  are distinct ordered trees b u t  i f  ordering were 

Thus, in 

no t  considered, they would be indistinguishable. 

A multiple descendent tree i s  an ordered tree in wh 

has either zero descendents o r  more t h a n  one descendent 

zero descendents i s  called a terminal node. 

ch every node 

A node with 

A multiple descendent m-ary tree i s  a multiple descendent tree i n  

which the number of descendents of any node i s  a t  most m. 

A complete m-ary tree i s  an ordered m-ary tree in which every node 

has zero o r  m descendents. 

binary trees, each with three terminal nodes, ( c )  i s  a ternary tree,  

b u t  i t  i s  not  complete since i t  also contains a node with fewer than 

three descendents, b u t  more than zero descendents. In the remainder 

of the paper, when no ambiguity will arise,  we shall often write "m-ary 

tree'' or simple ''tree" when we mean "complete m-ary tree". 

In Figure 2,  (a)  and ( b )  are complete 

We shall denote by tS', the number of (complete) m-ary trees with 

When i t  i s  clear from the context which m-ary trees n terminal nodes. 
are being considered, we shall often write tn instead of tn ( m )  e 

A context-free grammar ( C F G )  i s  an ordered four-tuple G = (VN9VT5P,S). 

where 

(a )  V N  i s  a f i n i t e ,  non-empty se t  of symbols, called non-terminal 

symbols, or syntactic variables; 

VT i s  a f i n i t e ,  non-empty se t  of symbols, called terminal ( b )  

symbols ; 

I 
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P i s  a f in i te ,  nonempty s e t  of syntactic rules, called pro- 

ductions, of the form U -+ x,  where U E VN, and x i s  a non- 

empty string of symbols from’VN VT. For a production 

U -+ x, the number o f  symbols i n  the string x i s  called the 

length of the production 5 

S i s  a special symbol i n  VN called the s t a r t  symbol. I t  

desi gnates the hi ghes t syntacti c category in the grammar. 

^ I  

The string x directly produces the string y ( x  => y)  i f  there 

exists strings u and v such t h a t  x = uAv and y = uwv and A -+ w i s  in P.  

The string x produces the string y ( x  =$ y )  i f  x = y o r  there 
* 

exists a sequence of nonempty strings w ~ ~ w , , ~ ~ . , w ~  such t h a t  x = w o 9  

y = W n 9  and wo => w1 =, 0 0 .  =;> wn. 

A contextnfree languas  ( C F L )  i s  the s e t  of strings x consisting 

entirely of terminal symbols, which can be produced by a context-free 

grammar, G ,  s tart ing from the symbol S .  

denoted L ( G ) ,  i s  therefore the set  L ( G )  = { X I  S =+ x and x E VT 1 

where VT denotes the se t  of a l l  possible strings of terminal symbols 

containing a t  least  one symbol. 

The language defined by G ,  
* + 

4- 

Let G = (YN9VT9P,S)  be a context-free grammar. A parse tree f o r  

the string x = al * e -  an in L ( G )  may be defined as follows: 

( a )  Every node of the tree has a label which i s  a symbol either 

from VN o r  from VI; 

The tree will have n terminal nodes whose labels, ordered 

from the l e f t ,  are al e e e , an9  respectively; 

All nowterminal nodes will be labeled with symbols from V N ;  

The label of the root  i s  S; 

I f  nodes P1, - 0 pPk are the direct descendents of node P ,  in 

( b )  

(c)  

( d )  

(e)  

I. . 

j 

i 
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order from the  l e f t ,  w i t h  l abe ls  A1 

then A + A, . e -  Ak must be a product ion i n  P. 

- - .Ak, respec t ive ly ,  

A CFG, G, i s  unambiguous i f  there e x i s t s  a unique parse t r e e  for 

each element o f  L(G); otherwise, G i s  s a i d  t o  be ambiguous. I f  G i s  an 

unambiguous CFG, then L(G) i s  an unambiguous CFL; otherwise, L(G) i s  an 

ambi guous CFL. 
I 

I , 

I 
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3. Enumeration of Complete m-ary Trees w i t h  n Terminal Nodes 

3.1 The Generating Function Approach 

3.1.1 Binary Trees 

We present here the development of an expression which gives the 

number of complete binary trees w i t h  n terminal nodes. When one con- 

siders the way in which binary trees may be combined t o  form larger 

ones, certain relationships become apparent. In Figures 3(a) - 3(d) 

are shown a l l  the binary trees w i t h  7 ,  2 ,  3, and 4 term nal nodes, 

respectively. Dashed lines are used in this Figure t o  ndicate the way 

in which the trees were combined, and expressions are g ven which des- 

cribe the relationships induced by these combinations. In Figure 3(a) 

i s  depicted the binary tree with one terminal node, and we indicate 

t h a t  tl = 1 

each are joined via a root node t o  produce a binary tree w i t h  two 

terminal nodes. 

situation. The juxtoposition o f  the symbols tltl lexically describes 

the graphical situation whi le  the numerical value of their  product 

tl ,, tl indicates the number of ways two trees with one terminal node 

each may be combined t o  form a binary tree w i t h  two terminal nodes. In 

Figure 3(c) the two possible trees with three terminal nodes are shown. 

One of these i s  constructed by joining a tree with two terminal nodes 

w i t h  a tree w i t h  one terminal node by means o f  a root node. 

indicated by tlt2* 

indicate the number of ways that such trees may be constructed from 

trees of one and two terminal nodes, respectively. 

In Figure 3(b) we see that two binary trees with one node 

The relationship t2 = tltl is given t o  describe the 

This i s  

Thus, we have the relationship t3 = t2tl + tlt2, t o  

Finally, Figure 3(d) 

a 

i 

... 



. t3tl 

t2 = tltl 

( b  1 

\ 
,I '\ 

t2 tl 
.' b 

t l  t2 

/ \  A I \  

// ' I \  

i i r' 'b 
t2t2 

t3 = t2tl + tlt2 

(4  

tl  t3 

Figure 3 

The Complete Binary Trees w i t h  7,2,3, and 4 Terminal Nodes 



dep ic ts  the  f i v e  ways t h a t  t rees  w i t h  one9 two, and th ree  terminal  

nodes may be combined t o  form t rees  w i t h  f o u r  te rmina l  nodes. 

The manner of cons t ruc t ing  a r b i  t r a r i  l y  1 arge t rees may be 

genera l ized eas i l y .  

case : 

The f o l l o w i n g  expression represents the general 

n- 1 

i=l 

If  we l e t  T2(x) be the  generat ing func t i on  f o r  b i n a r y  t rees,  then we 

have 
2 3 ( 2 )  T2(x) = tlx + t 2 x  + t 3 x  + . m e  e 

Squaring both s ides of t h i s  equation, we ob ta in  

But, by Equation (l)$ the c o e f f i c i e n t s  of xk i n  t h i s  equation, f o r  each 

k ,  i s  j u s t  tk9 so t h a t  we have, 

2 3 4 'J:(x) = T2x + t3x + t 4 x + ... e 

Hence 

TE(x) = T2(x) - tlX. 

Making use o f  t he  f a c t  t h a t  tl = 1 we have 

(3) T2(x) = T2(x) 2 9 x. 

So lv ing  the  quadra t ic  equation f o r  T2(x) we ob ta in  

(4) T2(x) = 1/2 - 1/2 

.j=O 

where we have merely expanded the  r a d i c a l  i n  the  s o l u t i o n  of the  

quadra t i c  equation. Thus, 

10 



I t  is  clear from (2)  and (4) that ,  

I n- 2 

, 

The development presented above i s  essenti a1 ly  s i  m i  1 a r  t o  t h a t  

given i n  Knuth [2] w i t h  minor differences. 

i s  t h a t  Knu th  develops an equation for the number of ordered ( n o t  

One difference worth n o t i n g  

necessarily complete) binary trees with n nodes while we have derived 

an equation for  the number of complete binary trees w i t h  n terminal 

nodes. 

n nodes i s  equal t o  the number of the l a t t e r  type of trees w i t h  n+l 

terminal nodes, and hence with 2n+l nodes. Riordan [5] also considers 

the problem of obtaining the number of trees w i t h  n nodes, and has de- 

I t  turns o u t  t h a t  the number of the former type of trees with 

veloped the generating function for such trees. 

In his 1967 paper, Scoins [3] also developed Equations (1 )  and (3) 

While he indicates t h a t  Equation (3 )  can be for ordered rooted trees. 

solved t o  obtain explicit  formulae for tn, he states t h a t  these would 

take longer t o  evaluate than the recurrence relation given by Equation 

( l ) e  

statement would appear t o  be unjustified. 

However, i n  view of the relative simplicity of Equation (5)> this 

We may ftnd an asymptotic approximation fo r  tn by using St i r l ing 's  

Approxi mati on 



. .  
n+1/2 n! 2 n 9 

and the definition of the exponential function, 

I t  is  easy t o  see that,  asymptotically, 

*2n- 2 
(6)  tn 2 

n 

T h i s  result  i s  also stated i n  K n u t h  [2]. Furthermore, using (5) ;  i t  

follows that 

- , and hence, since lim 
n+l n- n+1 

for large values of I?. 

The resul ts obtained 

upper bound on the number 

strings of a given l e n g t h  

i n  this Section may be applied t o  obtain an 

o f  parse trees that may be constructed for 

from context-free languages of the appropriate 

type, 

then the parse trees will be complete binary trees. 

unambi guous then by defi n i  t i  on any s tri ng o f  the correspondi ng 

language will admit only a unique parse tree.  

degree o f  amb-iBity of the grammar9 a string o f  length n from the 

language will admit a t  most en parse trees i f  the grammar contains no 

two productions w i t h  the same right-hand side, This l a t t e r  restriction 

In particular, i f  the productions of a CFG are a l l  of length two, 

If the grammar i s  

B u t ,  regardless o f  the 

12 
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i s  required t o  prevent the possibility of parse trees with the same 

graphical form b u t  with different labels. 

bound f o r  a given grammar comes t o  the theoretical upper bound will of 

course depend upon the grammar. 

How closely the actual 

A language i n  which a l l  strings o f  length n have t, dis t inct  parse 

trees i s  defined by the grammar G = (VN,VT,P,S), where VN = ( S I ,  VT = 

la,b),  and P i s  the se t  consisting of the four productions S -f ablaSl 

SblSS. Notice t h a t  each of the productions i s  of length two. 

t o  the property t h a t  i n  the parse tree, every S node will have two 

descendents. By definition, the terminal symbols with respect t o  the 

grammar will be terminal nodes in the parse tree., Furthermore, since 

the productions display non-recursiveness, right-, lef t - ,  and double- 

recursiveness , respectively , a1 1 possible complete binary trees wi 11 be 

represented by the parse trees, w i t h  one t r iv ia l  exception; there i s  no 

such thing as a single node parse tree. 

This leads 

An additional application of the results of this Section i s  t o  

context-free grammars i n  Chomsky Normal Form; t h a t  is ,  t o  grammars 

whose productions are o f  the form A -5 B C, and D + e ,  where A ,  B ,  C, 

and D designate non-terminals and e designates a terminal symbol. 

a grammar of this type contains productions o f  length one, no problems 

result  since each such producti on involves a terminal symbol (I 

While 

Therefore 

in a parse tree, the only nodes which have a single descendent are those 

which lead directly t o  a terminal symbol, and hence, a terminal node. 

If we think of these paired nodes as single terminal nodesg then the 

parse trees may be regarded as complete binary treess and hence the 

bounds on the number of parse trees may be obtained. 

13 
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3.1 e 2 Extenston t o  m-ary Trees 

The results obtained for binary trees will be extended here for 

arbitrary m-ary trees, To motjvate the extensions t o  the general case, 

we shall consider the specla1 case of ternary trees, Analogous relation- 
r .  

ships of those shown f o r  binary trees i n  Figure 3 are given for ter- 

nary trees i n  Figure 4, 

5 t l  f l  t 3  -5 t l  5 t3  t l  

t5 = t3 t l t1  + t l t g t l  + t i t l e 3  

(4 

Figure 4 

Trees w i t h  1,3, and 5 Temfnal Nodes 

Several observations may be made from Figure First., the summands 

for t5 are each the product. o f  three terms. 

generalize t o  m-ary trees where summands w S 1 1  each be the product of 

m terms, 

This will obviously 

Second, the sum of  the subscripts o f  each o f  the summands i s  

equal t o  the number of terminal nodes of the tree they describe, and 

for a given tree s ize ,  a % %  dis t inct  permutatlons o f  the subscripts i n  

a sumand will appear as other summands in the same sum, 

will generalize t o  w a r y  t ~ e e s .  

1”llustrate this case3 i t  i s  evident t h a t  t7 f o r  exampleg i s  equal t o  

This again 

T’kird, whiile Figure 4 does n o t  

t5t;lt.q + t l t5 ta  + t l t l t 5  b- tgt3t-g + t g t l t 3  b- t l t 3 t3  9 

t 



j 

and that  in general9 the summands for ti will include a l l  possible 

smaller tree sizes such t h a t  i f  i 1 3  i2 .  i 3  are legitimate tree sizes 

ti will appear as a summand. 
I 3 1 ti such that i l  + i 2  + i 3  = i ,  then ti 0 

' Finally, we notice t h a t  for complete ternary trees,  the number o f  ter-  

minal nodes t h a t  a tree can have i s  1 ,  3, 5,  2n-1 ,  ... ~ 

Thus, the relationships shown in Figure 4 may be generalized and 
Ir 

expressed as follows : 

t i l  t i 2  t i3  9 n% , 

summed over a l l  indices i 1 3  i 2 ,  i 3  for which 

15i12 i,, i3 2n+1 

i, + i, + i3 = 2n+3 

i = 2n. + 1 , 1&3, n >O 
j J j- 

9 

where ti3)= 1. This may be extended further t o  handle arbitrary m-ary 

trees t o  be: 

m 
summed over a l l  indices i19". , i  fo r  which m 

i,+i,+ e . e i-im = n ( m - l ) + m  

(m-l )+l ,  1 S j < , m ,  R > O  
j- s 

The generating function for m-ary trees may now be specified. 

This i s  just  

15 



where t j (m-1 (4 )+I are the number of m-ary trees w i t h  j(m-l)+l terminal 

nodes. Now, i f  we Paise Tm(x)  t o  the mth power, and apply the m u l t i -  

nomial theorems the coefficients of xm are just those given by (8).  

Hence the generating function fo r  m-ary trees sa t i s f ies  

(10) Tm (x)  = T: ( x )  + x 

T h i s  equation may be solved for m=2, 3,  and 4 in closed form, 

for m=2, Equation (4 )  results, 

and quartic equations may be used. 

equations i n  powers of x i s ,  a t  best, complex, 

We note tha t ,  from 

Indeed, 

For m=3 and Le, the formulae for cubic 

However, the expansion of the 

dn dn m -ET (x) ]  = +T ( x ) ]  for n>l 
dxn dxn 

and 

d i m  
dx $T m (x ) ]  = dx +T m ( x ) ]  + 1. 

Taking the limit as x+09 and noting that  Tm(0) = 0 ,  we may f i n d  the 

values of T,(")(o),  ut, we know that  

Hence, f t  would be easy t o  f i n d  the values of tn (m) us ings  for  example, 

a programming language that permits formal manipulation of symbols 

such as f n  FORMAC, o r  LISP. 

The material in this Section may be summarized by the following 

t k  eo rem 

repre- Ga"ven a complete m-ary t r e e 9  whew tn(m-l)+m (m) Theorem - ? :  

sents the number of m-ary trees w i t h  n(m-l)+m terminal nodes, then the 

fol l  owing holds a 



The generating funct ion i s  given by 

I 

j 
_ I  

\ 

( m )  j(m-1)+1 
(9) Tm(x) = tj(m-l )+I' 

j = O  
and the generating function sat isf ies  the functional equation 

(10) Tm(x) = T l ( x )  + x . 
The val ues of tn (m) (m- are given by the relationships 

summed over a l l  indices i 1 3  i 2 , . * . , i  for which m 
< 12il ,'. . , i  -n(m-l)+l m 

i +i +ee-+i =n(m-l)+m 1 2  m 

j J  
< .< > i =n.(m-l)+l, i-j-m, nj-0 

where tim) = 1. 

n- 1 For m=2 

n-2 !n! and (5) tn 

22n-2 
2 - and (6)  tn 

, $2 

I) for large n ,  

for large n .  2, - 4 tn  and (7)  tn+l 

In this Section, we have developed a recurrence relationship for 

the number of m-ary trees with n terminal nodes. In Section 3.2.2, we 

develop an explicit  formula for the number of such trees. These 
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results may be appl ied  t o  obta in  the upper bound on the number of parse  

trees t h a t  may be cons t ruc ted  f o r  strings from spec ia l  types of context-  

free languages. In p a r t i c u l a r ,  t:") i s  the upper bound on the number 

of  parse trees of  a s t r i n g  of length n from a language generated by a 

grammar whose productions a r e  a l l  of length m, and i n  which  no two pro- 

duct ions have the same right-hand s i d e .  

Sec t ion  3.1 e 1 we may r e l a x  the r e s t r i c t i o n  on the l e n g t h  of  the pro- 

duct ions t o  allow, i n  addi t ion  t o  productions of  length m, productions 

As we did  a t  the end o f  

o f  l ength  one where such productions involve a terminal  symbol. 

this type o f  grammar9 tAm)is a l s o  the upper bound on the number of 

parse  trees f o r  a s t r i n g  o f  length n e  

For 

For m equal t o  2 ,  we have given i n  Sec t ion  3.1 1 a grammar w h i c h  

will r e a l i z e  a11 tA2) parse trees f o r  a given n e  We may gene ra l i ze  

t h a t  grammar t o  produce a grammar w i t h  the same property f o r  a r b i t r a r y  

m and n.  Such a grammar may be specified as  G = (YN.VT,P,S) where 

= {SI, VT = {a), and the productions a r e  a l l  of length m having 

the property t h a t  a11 the permutations o f  0 , l  up t o  m S ' s  w i t h  m, 

m-1, ..., 0 a ' s s ,  r e spec t ive ly ,  appear a s  the r i g h t  p a r t ,  x:, of a rule of 

the form S+x, 

* .  
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3.2 New Proof Using a Recognizer 

3.2.1 Binary Trees 

1 

i. .. i 

I 

An alternative derivation of the expression for  computing the 

number of complete binary trees w i t h  n terminal nodes i s  presented 

here. 

strings in the language defined by the grammar, G = (VN,VT,P,S) where 

V contains the sole non-terminal symbol S, which i s  also, therefore, 

the s t a r t  symbol of the grammar; VT contains two terminal symbols, 0 

and 1 ; and P contains the following two productions, S -f 0 I 1SS. 

The approach has been motivated by considering the parsing of 

N 

The strings i n  L ( G )  the language defined by G ,  correspond t o  the 

complete binary trees,  as i s  shown in Figure 5. 

shown in Figure 5 i s  derived from the fact  t h a t  every string of L ( G ) ,  

other t h a n  the string 0 ,  i s  composed of a 1 followed by two substrings, 

each o f  which is  also a member o f  L ( G ) .  

the left-most 1 of a string in L ( G )  t o  the root  of a tree,  and the l e f t  

and right well-formed substrings t o  the l e f t  and right subtrees of the 

root ,  respectively, the correspondence shown i n  Figure 5 i s  obtained. 

The correspondence 

Therefore, by corresponding 

Notice t h a t  the trees i n  Figure 5 are n o t  the parse trees for  ele- 

ments of L ( G ) ,  since the l a t t e r  trees will be ternary trees in which 

every S node has either one or three descendents. 

the string 1011000 i s  given in Figure 6 t o  i l lus t ra te  this fact. 

grammar glven a t  the end of Section 3.1,1 defines a language for which 

the parse trees correspond t o  a l l  the complete binary trees. 

A parse tree for 

The 
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1 1 
0 

Single 
node 
tree 
0 100 11000 10100 

Figure 5 

Correspondence Between L ( G )  and Complete Binary Trees 

Figure 6 

Parse Tree for  an Element o f  L f G )  

By identifying certain classes of strings o f  L ( G ) ,  and counting 

the members i n  these classes, one gains information about the corres- 

ponding classes of trees. 

gave for  arbitrary n the number of strings i n  L ( G )  which are o f  the 

For example, i f  one had an expression which 

form 

x x , .  . x o o  
n-2 

where an X indicates t h a t  the symbol i s  a zero or a one, then the same 

expression gives the number o f  complete binary trees with n terminal 

nodes, Such an expression i s  a special case of one which gives the 

number o f  strings of the form 

i 
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x x . . . x  o o . . . o  
n k 

! 

i 
. . 1  

which are in L ( G ) .  The more general formula will be developed f i r s t ,  

and then an expression which gives the number of complete binary trees 

with n terminal nodes will be derived as a special case. 

Let S ( n , k )  denote the se t  of a l l  well-formed strings in L ( G )  which 

have a t  least  k terminal zeros, and are of length n+k. T h a t  i s ,  the 

strings of S ( n , k )  are of the form 

x x .  . . x  0 0  . . .  0 

n k 
Y 

where an X indicates t h a t  the symbol i s  a zero or a one (as  permitted 

by well-formedness considerations) , and n and k are integers such t h a t  

O:k:n+l, and n>O. 

Let F ( n , k )  denote the number of elements in S(n ,k) .  To determine 

the number of well-formed strings of the form F(n,n-(k-l)), we require 

the following Lemma: 

Lemma 1. 

Let F ( n , k )  denote the number of well-formed strings in L ( G )  with 

a t  least  k zeros in i t s  rightmost configuration. Then, the following 

relations hold: 

(11) F(2,O) = 0 ;  

(12) F(n,O) = F(n-131)  = F(n-2 ,2 )  for $3; 

(13) F(n,n+l) = 1 for nZ0; 

(14) F ( n , k )  = 0 for k>n+l; 

(15) F(n,k) = F(n-l,k+l) + F(n-1 ,k -1 )  for n:Z9 2-<k-<n+l. 

_3_ Proof e 

Equation (11) i s  an obvious consequence of the grammar since al l  
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well-formed strings must have an odd number of symbols, Equation ( 1 2 )  

i s  a consequence of the fact  t h a t  every string in L(G) of length greater 

than 1 must have two zeros a t  the right-hand end, for  otherwise i t  i s  

not  well-formed, 

n=O1 then y=O i s  the only possible string. 

the string y 9  denoted by lyl i s  2n+l. 

have n ones and n+l zeros. B u t  since y has n+l terminal zeros the 

f i r s t  n symbols must a l l  be ones, and there i s  only one such string y 

for  each n, 

string w i t h  n ones has exactly n+l zeros. 

there will no t  be enough ones in the string t o  scrtisfy the well- 

formedness cri terion. 

To prove (13), l e t  y be a string i n  S(n,n+l). I f  

I f  n>O, then the length o f  

Any string o f  this length must 

To prove (14)9 we observe once again t h a t  any well-formed 

Therefore, i f  km+l I) then 

We must now prove (15) t o  complete the proof o f  Lemma 1. Let y E 

S ( n , k ) .  

or  1 for each i 

str ing i s  well-formed according t o  the grammar. 

a str ing i s  well-formed, we may work from r i g h t  t o  l e f t  w i t h  the string, 

and place each element on a stack. .. enever we come t o  a case where 

Xi = 1,  we pop-up the l a s t  two entries on the stack. 

zero's or S ' s g  we place an S on the stack. 

o f  well-formed strjngs, This s e t  may be subdivided in an obvious man- 

ner into the class of well-formed strings w i t h  Xn = 0,  and the se t  o f  

Now consider the s e t  o f  well-formed 

Then, y = X1X2 .*.  Xn0102 ... o k 9  and IyI = n + k ,  where Xi  = 0 

and 0 = 0 for each j ,  under the assumption that the j 
To t es t  whether or n o t  

I f  they are no t  

Now consider the se t  S(n,k) 

-formed strings with X n  = 1. 

strings w i t h  Xn = I .  

zero's go on a stack. 

t o  be well-formed, clearly k12. 

entries on the stack by an S. 

I f  we are testing the well-formedness, the k 

When we reach X,, i t  i s  a 1 ,  and for the string 

Therefore, we replace the l a s t  two 

I f  we now return the entries on the 

r 

I 

! 
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i 

d stack t o  the modified string, we have, y = X1 * . .  Xn-l  S O3 . * .  gk’ o r  

a well-formed s t r i n g  w i t h  (n-1) X‘s and k-1 zero’s (where S counts as 

a zero) i n  L ( G )  . Hences we have 

F ( n , k )  = F ( n - l , k + l )  + F(n-1,k-1) for k22. 

Also, since we must have k-<n+l, by Equation ( 1 4 ) ,  the proof o f  the 

Lemma i s  complete. 

Lemma 2. 

F ( n , n - 1 )  = n-1 for n l 2 .  

Proof. 

The proof i s  by induction on n.  Let n = 2 ,  then we have, from 

Equation (12) and (13)@ 

F ( 2 , l )  = F(1,2) = 1 

Now suppose the Lemma i s  valid for some arbitrary value of NL2, and 

that n = N t 1. We have from Equation (15), from Equation (132, and the 

i nducti on hypothesis 

F(Nt1,N) = F(N,N+l) + F(N,N- l )  

F(Nt1,N) = N .  

and 

T h i s  concludes the proof of Lema 2. 

We may now prove the following theorem required t o  develop the number 

o f  complete binary trees (I 

Theorem 2. 

Suppose n and k are integers such that 2-k- 2 . < < n  

Then k-2 
( n - i )  

i =O 

k! 
(16) F(n,n-(2k-l)) = ( n - ( 2 k - 1 ) )  0 

Proof  

The theorem will be proved by induction on b o t h  n and k .  
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Let k=2 .  Then we want t o  show t h a t  f o r  a l l  1124, 

0 
( n - i  ) 

(17)  F(n,n-3) = (n-3) .. i = O  
2! 

T h i s  w i l l  be shown by induct ion on n .  

Equation ( 1 2 ) $  

Let n=4. Then we have, by 

F ( 4 , l )  = F(3 ,2) ;  

and by Equation ( 1 5 ) ,  

F ( 4 , l )  = F(2,3) + F ( 2 , l ) ;  

and by Equation (12)  , 
F ( 4 , l )  = F(2,3) + F ( 1 , 2 ) ;  

and by Equation ( 1 3 ) ,  

F ( 4 , l )  = 2. 

T h i s  l a s t  equat ion may be written a s ,  

0 
(n- i  ) 

i PO 

2! 
F ( 4 , l )  = 1 0 ¶ 

thereby proving the base of the induct ion on n ,  

(17) holds fol- a r b i t r a r y  N14 and consider  the case where n = N 3. 1, 

We have, by Equation (15) 

Now assume Equation 

F(NI.1 , N m 2 )  = F(N,N-l) + F(N,N-3) e 

By Lema 2 ,  and the l’ndnction hypothesis ,  

0 
(N-i ) 

i a0 

2! 
F(Nf1,N-2) = (Nwl) + {N-3) 0 

T h i s  l a s t  expression may be rewritten as  

24 



I 

I 

i 

i 
. .  

0 
((N+l)-i) 

F(N+l ,W-2) = ((N+l)-3) 0 i =O 
2! 

thereby concluding the induction on n and hence the base of the induc- 

tion on k .  

Now assume that Equation (16) i s  valid for some arbitrary value 

of K22 and for  a l l  n12K. Notice, i n  the equations t h a t  follow, t h a t  

for some fixed value of k ,  the difference between the f i r s t  and second 

subscripts of F will remain fixed a t  2k-1 for a l l  values of n. We now 

consider F(2K+2,2K+2-(2(K+l>-l)); that i s ,  we shall prove the case for 

k=K+1 by induction on n 4  so we begin by lett ing n=2(K+1).  Simplifying 

the second subscript, we obtain 

F ( 2K+2,2K+2- ( 2 ( K+ 1 ) - 1 ) ) = F ( 2K+2 1 ) 

and from Equation (12), 

F ( 2K+2 2 K+2- ( 2 ( K+ 1 ) - 1 ) ) = F ( 2K+1 2 ) . 
B u t  i n  this l a s t  expression, the difference between the subscripts of 

F is 2K--l. 

Equation (16). Therefore, for n=2K+2, Equation (16) i s  valid. This 

T h i s ,  therefore sat isf ies  the induction hypothesis of 

concludes the base of the induction on n .  

Assume now that Equation (16)  i s  valid for some arbitrary value 

of N>2(K+l) and consider n=N+l.  Consider the identity: 

F(N+l ,(N+1)-(2( K+l)-l ) )  = F(N ,N-(2( K+l)-l)) e 

We have, by Equation (15) of Lemma 1 

(1 8) F(N+19 CN-1.1) (2(K+1 )-I  ) ) = F(N ,N-(2K-1) ) f F(N 9N- (2( K + 1 )  -1 ) ) . 
B u t ,  by the induction hypothesis for  n ,  

K- 1 
( N - i )  

F( N ,N-  (2 ( K + 1 )  -1 ) ) = (N- (2( K + 1 )  - 1 ) ) e i =O 
(K+l)! 
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K- 1 
(N+1 -i ) 

- - ( N - E K - I ) ( N - K + ~ )  . i -0 
(Nt.1) (K+l)! 

In addition, by the induction hypothesis for k.  
., 

K- 2 
(PI-i ) 

F(N,N-(ZK-l)) = (N-(ZK-l)) * 

K! 
K- 1 

(N+l-i ) 
- - (N-ZK+l) (K+l) i =O 

(N+1) (K+l)! 

T h u s ,  Equation (18) may be rewritten as 

F( N+19 (N+l ) - ( 2 ( K+l ) - 1 ) ) 
K- 1 

(W+1- i ) 

t - - 

K- 1 

i =O 
= ( N - Z K )  e 7K+1)! 

(K+l)-2 
((N+I)-i 

i =O N+1) - (2(K+1)-1) 
(K+l)! 

This concludes the induction on n and on k ,  and hence, the proof 

of Theorem 2. 

N o w  t h a t  Equation (16) has been established, the number o f  com- 

plete binary trees with n terminal nodes can be derived. 

a binary tree t o  have n terminal nodesg i t  must have n-1 non-terminal 

nodes, o r  a total  o f  211-1 nodes. 

In order for 

As noted previously, F ( n , k )  represents 
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the number of well-formed strings w i t h  a t  least  k zeros a t  the r i g h t .  

Now, F ( n , 2 )  further represents the number of complete binary trees 

w i t h  n+2 nodes. F(2n-3,2) i s  the number o f  complete binary trees w i t h  

n terminal nodes. 

We may use Equation (16) t o  find F(Zn-3,2), since 

Therefore, i f  we evaluate F(Zn-3,2), we obtain tne 

F(2n-3,Z) = F(2n-3,2n-3-(2k-l)), 

where obvi ous ly k=n-2. Therefore, 
n-4 

tn = F(Zn-3,2) = i =O , $3, and 

2 (2n-3-i ) 

(n-2) ! 

7 n-3. 

We note t h a t  this i s  the same formula as g iven  in Equat ion (5), Section 

3.1.1. 

I 

i 
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3.2.2 Extension to  m-ary Trees 

In the previous Section, we developed, for binary trees,  an 

expression for  computing F ( n , n - ( Z k - l ) )  i n  general, and applied this to 

obtain the values of titZ) = F(2n-3,2). In this Section we t r ea t  the 

general case of m-ary trees by deriving an expression for F,(n,(m-1)n- 

( m k - l ) ) ,  the number of strings L(G,)) m Z 2 ,  o f  length mn-(mk-1) which 

have a t  least  (m-1)n-(mk-1) terminal zeros. 

language defined by the grammar Gm=(Vn9VT,P,S)  where Vq=(S19 VT=(O,ll, 

and P consists of the productions : 

By L(G,), we mean the 

I .  

s - t o  I 1 s s * r e  s. 

m S ‘ s  

I t  i s  clear t h a t  the elements of L(G,) correspond to the complete m-ary 

trees. Once we derive Fm(n9(mrl)n-(mk-l)), we apply the results t o  pro- 

duce, as a special case, the number of complete m-ary trees w i t h  n ter- 

minal nodes, tAm) 

a generalization of Lemma 1 given i n  the previous Section. 

To support the development to  be pursued, we need 

Since i t  i s  

an obvious generalization of Lemma 1, i t  will be stated without proof. 

Lemma 3. 

Let F,(n,k) denote the’number of well-formed strings i n  L(G,) w i t h  

a t  least  k-zeros a t  the r ight -hand end o f  the string. Then, 

(19) Fm(2,0) = Fm(3,0) = * * e  = Fm(m,O) = 0 ,  for mZ2; 

(20) F,(n,O) = F,,,(n--191) = e - *  = Fm(n-m9m),  f o r  n-mbl; 

(21) F,(n,n(m-l)+l)  = 1, for  nzO; 

(22) F m ( n , k )  = 0,  for  k > n ( m - l ) + l ;  

(23) F m ( n , k )  = F,(n-l ,k+l) 3. F,(n-l,k-mf-l), for n k ?  and 

> 
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We now derive a result  similar t o  Theorem 2,  b u t  for arbitrary m. 

i Theorem 3. 

Let m ,  k ,  and n be integers such t h a t  m22, k l l ,  and n- ' m-l mk . Then, 

(24 )  Fm(R9 (m-l>n-(mk-1)) = Fm(i9 (m-l)i-(mk-(mtl))) 
n-1 

i=Nk 

- -  * 1 if (m-1) divides k 
m-1 

where N = * k 
otherwise 

Proof. 

The theorem will be proved by induction on n ,  Let m and k be 

arbi t rary integers such t h a t  k Z 1 ,  and m520 
c 

mk if (m-1) divides k 
rrp?: 

Let n = 

+ 1 otherwise. 

Case 1 e 

In this case we suppose t h a t  m-1 divides k .  We therefore, consider 
- 

the case where n = - mk Then, m-1 . 
and by Equation 

(20) 4 

* '1 t o  denote the greatest integer in E a 

9 9 
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This l a s t  equation can be rewritten, obviously as 

This equation may be rewritten as, 

Fm(i ,(m-l)i-(rnk-(m+l))), 

since when i = - - 1 ,  evaluation o f  the second subscript yields the m- 1 

value o f  2, as i t  should. 

- 1, and n - - - which i s  w h a t  we of Equation (24) ,,.where Nk = m-l 

wanted t o  show. 

B u t ,  th is  las t  sum i s  precisely o f  the form 

rn- 1 
mk 

Case 2. 

We now suppose t h a t  m-1 does n o t  divide k.  

we must consider n = $. 1 e Then we have 

In this case therefore, 

(m-I) + m - 

mk Let - m- 1 = p + m-l r , where o<r<m-l p-1 > e 

J 
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Substituting this value into Equation (251, we o b t a l n  

i 

< <  where 2-rn-r-m-1, Fm 
Now, by Le 

T h i s  

( 

fa t ter  equation may be rewritten, obviously, as 

+l ,m- ( i  ,m-r+l) = ( i  ,(m-l)i-(mk-(mt.l))). m m 
i =  

B u t ,  this l a s t  sum i s  precisely o f  the form of Equation (24) 1) where 

This concludes the base of the induction. 

Now assume the Theorem holds for some integer N such t h a t  N > - m-l mk 

where m22 and kL1 are fixed integers. Suppose now t h a t  n = M t l ,  Then 

we have, from Lemma 3, Equation (23), 

Fm( Ntl (Ntl) (m- 1 ) - (mk- 1 ) ) 

Rewritjng this  equation, we have, 

and,  by the inductjon hypothesis on the second term, we have, 
_- - _ _  - _I N - l  

F (i f (m- 1) - (mk- (m+l) ) ) m 

This obviously becomes 

M 
- - ~ ~ ( f ~ i ( m - ~ ) - ( m k - ( ~ l ) ) ) ~  concluding the proof .  

'"Nk 
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Theorem 4. 

Let m ,  k ,  
R- 1 

dnd n be integers such 

Fm (i i (m-1 ) - (mk- ( m t l  ) ) ) 

that  m22 

- 1 if (m-1) d iv ides  k 

where N - k- 

otherwise. 

Proof. 

> k-1 ,  and n i  mk 
m- 1 
- Then 

The Theorem will be proved by induction on k. 

and n be arbitrary integers such that  mZ2 and n- > - . 
3 ,  Equation (21)9 i t  follows immediately that  

Let k = l ,  and l e t  m 

Then, by Lemma 
m- 1 

> m# Now assume t h a t  Equation (27) holds for some K21, and m22 and n- 3 
where K, m 3  and n are integers. Then we have, from Thewem 3 ,  

n- 1 

.. . 
Fm(iK9iK(m-1 )-(mk-1)) ). 

By the induction hypothesis, we have, 

i 3-1 

i *=N2 

i 2-1 

1 

i 1=1 
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Thus concluding the proof o f  Theorem 4, 

We now derive as a special case o f  Theorem 4, tAm)3 the number of 

m-ary trees w i t h  n terminal nodes. We observe that i f  a complete m-al-y 

tree has n terminal nodes then n I s  an integer of the form 

n = mt(m-l) j ,  j = 0, 1, 2, 

In addition, i f  N i s  the total  number o f  nodes i n  such a t rees  then 

N = ( W l )  + m j ,  j = 0, 1,  2 ,  R Q ’ *  

M o w  9 

tim) = F(N-man) 

and from the above relations that deftnne the  -form o f  n i n  terms o f  m 

Applying Theorem 3 t o  Equation (28), we obta in  

mi 

where i n  Equation (24)9 we have l e t  n=l+mj ,  and k=.j(in-,’Il). From 

where M = 
t 

otherwise 
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Equation (29) gives an explicit  formula for the number of m-ary trees 

with n terminal nodes, where n i s  of the form mt(m-l)j, j = O ,  1 ,  ... .( 

3.3 A Conjectured Formula 

In the previous sections we have derived explicit  formulae fo r  the 

number of complete m-ary trees. We wil l ,  in this section, provide an 

alternative formula for  the number of complete m-ary trees. 

mula was developed by observation o f  how the complete trees are parsed. 

However, we have no t  derived a rigorous proof t h a t  the formula i s  

correct. 

works in a large number of cases. 

The for- 

We have verified t h a t  the conjectured formula given below 

We provide the formula here since 

the computer implementation of the conjectured formula i s  slgni ficantly 

fas ter  than computing the number of complete mnary trees for either of 

the formulae given in Section 3.1 or  Section 3.2.  

Conjecture 

The number o f  complete mmary trees with n terminal nodes, where n 

i s  of the form mt.(m-l)r, r-0, 1 ,  2 9 . 0 0 9  and m32, 31. .09  i s  given as 

=P 

where, 
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i 

k 

and a ai ,n-mtl e 

The reason f o r  the ease i n  computation may be seen by observing 

the following triangles for  cases, m=2 and m=3. 

1 

(2) ,(2) , (2) 
l ,n  2 ,n  3,n 4,n 5,n a 

1 

i 12 1 + 2 + 3 3 + 3 

(3) = 55 = 1 . +  3 + 6 + 9 + 12 + 12 + 12 t9 

To indicate the speed i n  computing the conjectured formula, i n  

contrast t o  that  of the formula i n  Section 3.2.Z9 t o  find the 3-ary 

trees up t o  t2, 

the former was obtained i n  the order of milliseconds. 

i t  took i n  the order of minutes for  the l a t t e r ,  whi le  
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4. Enumera'tion of Multiple Descendent Trees w i t h  n Terminal Nodes 

We now consider trees with an arbitrary number of branches 

emanating from each node. 

of multiple descendent trees which were defined in Section 2. We shall 

Speci f i  cal ly, we consider the enumeration 

derive an explicit  formula for  the generating function and, an explicit  

formula for tn3 the number of multiple descendent trees with exactly n 

terminal nodes. Specifically, the result  t h a t  we shall now prove i s  
1 

stated as follows: I 

Theorem 5. 

Let tn denote the number o f  multiple descendent trees with n 

termi nal nodes. Then the generating functi on 

03 

(30) T(x )  = tnxn  i s  given by the functional equation 
n= 1 

(31) 2T2(x) - (x-1) T(x)  + x=Os 

which may be solved t o  yield 

x+l 1 (x2 - 6 ~ ) ~ ~  
4 ) T(x)  = -q- - 

Furthermore, t l = l ,  and for n>l ,  tn sat isf ies  the relationship 

n, til" '  ti ! 

(33) tn = ti ti + ti ti ti + e a * +  

i 1 2 3  
i l  .+A3 i l , - e 9  n 

9 2  i l  J2  
i +I +i i 1+* m+i n=n i l+i 2=n 1 2 3=n 

for n > l .  

An explicit  formula for tn i s  given by 
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I 

= 1  

2( i -n)+l 2n- 1 

,n>l - 1 
4 

- - -  
i =n  

Proof. 

The assumption t h a t  the trees are multiple descendent trees pre- 

vents long strings of the forms shown in Figure 7. 

Figure 7 

Trees Excluded from Consi derati on 

The trees shown would be considered as mapping into the trees shown i n  

Figure 8. 

Multiple Descendent Trees 
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Now consider an arbitrary tree of the appropriate form. We 

observe the way i n  which we can generate trees w i t h  n terminal nodes. 

We can generate such trees by s tar t ing w i t h  a tree t h a t  has a t  i t s  top- 

most node exactly two branches, one with exactly three branches, pro- 

ceeding i n  sequence t o  a tree w i t h  exactly n branches from the root. 

N o w ,  select  an arbitrary tree from this se t ,  say i t  has m branches 

emanating from the root. Then, consider the nodes a t  the next level; 

they consist of trees w i t h  a certain number of terminal nodes. 

total  of a l l  terminal nodes i n  each of the m trees must be equal t o  n .  

Hence, we must have the relation 

The sum 

I 

til" '  ti n ,  
(33) tn = ti ti t + * * e t  

i 1,. 0 P , i n  
1 2 i3  i i  1,  2 

il+"'+i n =n i +i +i 1 2 3=n i l+i 2=n 

as was t o  be shown. 

Now consider the generating function for such trees, 

n= 1 
t h  where the tn are given by Equation (33), i t  i s  easy to  see t h a t  the m 

power of the generating function has the form 

W 

,(m) xn 
n (35) Tm(x) = 

n= 1 

where 

t i l e e '  ti m ") 

(36) tim) = 
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i 

Then, from Equations (33), (30), (35), and (36), i t  may be seen that 

03 

i T(x) T ( x )  = x 
i =2 

and hence, 

03 

i T(x)  - T2(x)  T (x )  = x , 
i =O 

which i s  readily seen t o  be 

T(x) - $$$ = x 

Hence, T(x) sat isf ies  

(31) 2T2(x) - (x+l)T(x)  + x = 0. 

Solving this quadrati c equation we readi ly  obtain (32). Expandi ng  the 

sum t o  ob ta in  powers of x, we obtain (34). This completes the proof o f  

Theorem 5. 

By computing the f i r s t  few values of tn9 one finds that  the generat- 

ing function may be rewritten as 
2 4 T(x) =. x + x + 3x3 + l l x  + 45x5 + 197x6 + 0 . -  . 

I 
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5. Enumeration of Multiple Descendent m-ary Trees with n Terminal Nodes 

We consider now the number of multiple descendent m-ary trees with 

Let the generating function for these trees be given n terminal nodes. 

We seek a relationship which gives u i m ) >  the number of multiple descen- 

dent mFary trees w i t h  n terminal nodes. I f  n-<m then i t  i s  obvious t h a t  

the number of such trees is  equal t o  the number of multiple descendent 

trees w i t h  n terminal nodes. 

been derived in the previous Section. 

An explicit  formula for the l a t t e r  has 

For the present purposes9 i t  
suffices t o  give the recurrence relationship for  un (m) : 

( m )  ui 9 
(4 (d . . D  

1 n (38) u,!,~) = 'i 'i 
i i i l , i 2  1 9  9 n 

i l+i 2=n il+"'+i n =n  

< for n-m. 

Xf n>m, then by considering the possible subtrees of the root  as we have 

done previously, one obtains the relationship 
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Equation (38) and Equation (39), therefore, define the coefficients o f  

the generati ng function of Equati on (37) 
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6. Conclusion 

In this paper we have considered the enumeration of trees based 

upon the number of terminal nodes that the trees may contain. 

types of trees considered were the multiple descendent trees 

multiple descendent m-ary t reesg and the complete m-ary trees. The 

motivation for these explorations stemmed from the authors ' consi dera- 

tion o f  the composing of binary relations. 

correspond t o  the complete m-ary trees,  these trees have been treated 

most extensively. 

complete m-ary trees both from the generating function and the syntax 

recognition approaches. Certai n ways of analyzing the 1 i near strings 

representing the trees have also led us t o  a conjectured formula. 

The 

the 

Since the resulting strings 

Explicit formulae have been developed for the 

To complete the study of the enumeration of the trees based on 

the number of terminal nodes, the authors have developed the explicit  

formula for the nun-ber of multiple descendent trees and a recurrence 

relationship for the number of multiple descendent m-ary trees. The 

l a t t e r  result lends i t s e l f  t o  further extension in t h a t  i t  l's likely 

t h a t  an explicit  formula may be obtained. 

The results obtadned on the number of complete m-ary trees were 

used t o  obtain upper bounds on the number o f  parse trees which may 

be constructed for strings of given length from context-free languages 

of speci f i ed types 
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This 

i mp 1 ement 

i n  MAD t o  

Appendix i ncl udes 

the formula given 

Appendix 

the program written i n  FORTRAN V t o  

i n  Section 3,2,2, and the program written 

implement the formula i n  Sectio!i 3.3. Both programs were 

written for and executed on the UNIVAC 1108. 

We also include the computer printouts of the MAD program as Table 

A1 through Table A19. In these Tables, we have, i n  the column labeled 

SUM, given the values o f  t!k) for  each value of k i n  the range 2<k120, 

and values o f  J’ = k+(k-l)(i- l)9 where l l i %  for  the value o f  n indicated 

in each Table. In Tables A1 through A4 and Table A9, several o f  the 

values are asterisked t o  indicate , t h a t  these were verified by the 

FORTRAN program. 

because t o  do so would have required excessive computer time. 

J 

Complete veri f i  cati  on of the values was n o t  attempted 



1 

L 

F i g u r e  A 1  

FORTRAN V Program f o r  the Number of m-ary T,rees 
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~. 

id 

Figure A2. 

MAD Program f o r  the Number o f  rn-ary Trees 
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i 
I 
$ .~ 

i 

1" 
2" 
5" 
14 * 
42 * 
132 * 
429 * 

1436 * 
4862. * 

16796 * 
587136 * 

2;3ao12 
7Lc2cjoo 

2074440- 
9b94845 
35357670 

129644790 
Y77638700 
17672631'30 
6564120420 

TABLE A l .  K=2, N=20 

f SUM 

a a *  
2 Q *  
3 22 * 
4 140 * 
5 969 * 
7 5382C 

9 33622.60 

6 70s4 * 
--e- 4 20 732--- 

3.0 2 7 3 ~ ~ 8  

TABLE A3. K=4, N=10 

TABLE A2. K=3, N = 1 5  

1" 
r *  3 

3 35 * 
4 2!35 * 
5 2530 * 
6 23751 * 
7 25188L 
8 2330445 
9 23950355 
10 250543370 

TABLE A4. K=5, N = 1 0  

* Resu l t s  verified with FORTRAN V program. 
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I 5 II M I 51!1\.? 

1 1 
2 6 
3 51 
Li 506 
5 5481 
b 628252- 
7 749398 
a 9203634 -- 
9 115607310 
10 1Y78314266 

_ -  

TABLE A5. K=6, N=10 

1 
2 

.. - 1 
7 

3 7 0  
4 a19 
5 13472 
6 1 '4 1 7 7 8 
7 199 7 6 tc 6 
s 2 8 9 ti 96 7 5 
9 430321633 
10 6503352856 

-. 

TABLE A6. K=7, N = 1 0  

I[ SUM , f SUM 

- -  - 92 i 
5 18270 I 
6 2a538rC- I 

3 
Y 1240- 

7 4638348 
0 77%52024 
9 13291390705 

I - ~  - 

0 23190029720- - 

TABLE A7.  K-8, N=10 

1 a 
2 9 

: Q  1785 
5 29799 

' 6  527085 
i 7  9706503 

9 3573305950 

~- - . . _ _  __ 

i ' 3  117 

8 18413a713 

TABLE A8. K=9, N=9 
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I 

i 

TABLE A9. K=10, N = 9  

. I  

I SUM 

. 1. .. 
2 

1 
12 

3 210 
4 4324- 
5 '37527 
0 2 3 3 1'3 2 4 
7 58Crh8792 
b 148919906'0 

TABLE All, K-12,  N = 8  

* Results verified with FORTRAN V program. 

49 

TABLE A10. K = l l ,  N = 9  

1 
2 

1 
3.3 

247 
4 5525 
w c 1354u6 
G 35 1. ij 5 1 5 
7 95223414 
& 2655417765 

1 u 

TABLE A 1 2 .  K=13,  N=8  



I SUM 

1 1 
L 14 
3 287 
4 6930 
5 1S3379 
t 5145336 
7 150374056 
ij Y52848-63iV- - 

c 

TABLE A13.  K=14 ,  N = 8  

I. SUM 

TABLE A15.  K=16, N = 8  

TABLE A 1 4 .  K = 1 5 ,  N=8  

. I SUM 

1. 
17 

J 3  425 
12529 

404957 I 5  
‘ 6  13581945 

7 435729741 
8 18243038385 

i - 4  

TABLE A16.  K=17, N=8  
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I 

1 s LI 1.1 

TABLE A17. K=18,  N=8 

I SUM 

1 i 
2 2 0  
3 590 
4 20540 
5 704245 
6 3 1 763 0 0 4 
7 863917560 

TABLE A19. K=20, N=7 

TABLE A18.  K = 1 9 ,  N=7 

51 


