https://ntrs.nasa.gov/search.jsp?R=19700019407 2020-03-12T02:05:27+00:00Z

Technical Report 70-112 April 1970
NGL-21-002-008 and CST-821-5-69

ON THE NUMBER OF TREES
WITH n TERMINAL NODES
by

Jack Minker
Daniel H. Fishman

s

o Technical Report 70-112 April 1970
} NGL-21-002-008 and CST-821-5-69

ON THE NUMBER OF TREES
WITH n TERMINAL NODES

by

i Jack Minker
: Daniel H. Fishman

This research was supported by the National Bureau of

Standards under contract number CST-821-5-69. The computer

time for this project was supported by National Aeronautics

and Space Administration Grant NQL-21-002*§Qéito the Computer

,ﬁ Science Center of the University of Maryland.

TABLE OF CONTENTS

g Chapter Page
. Abstract
} 1. INTRODUCTION Ceveeens Cereaan Ceeeeaeees e eeeeaes 1
ﬁé 2. DEFINITIONS e e rieaeeaa, 4
| 3. ENUMERATION OF COMPLETE M-ARY TREES WITH n TERMINAL
mg NODES ..veveniveosocasonnsnensasassossnosacansansans
¢ 3.1 The Generating Function Approach 8
f; 3.7.7 Binary TreesS . .uveeeceseeneseeennnnansnns 8
; 3.1.2 Extension to m-ary Treescee.n. 14
% 3.2 A New Approach Using a Recognizer 19
. 3.2.7 Binary Trees .uveeeneeeeeoennncenaanesns 19
v 3.2.2 Extension to meary Treesveeeeen. 28
% 3.3 A Conjectured FOrMUTA ..uvuevnereenenenennnnnns 34
4, ENUMERATION OF MULTIPLE DESCENDENT TREES WITH n
% TERMINAL NODES v'vvunsnrenenenocncnsoacsennnansnns 36
) 5. ENUMERATION OF MULTIPLE DESCENDENT M-ARY TREES WITH
sh n TERMINAL NODES ...uovvvnniinininiiniiininnennnen. 40
: 6. CONCLUSION ceeae S 42
RETEIENCES tivrvvvenerensesocossossnsscscossosnessssassnscasnanas 43
Appendix G e eesasacasaeassetasacsassteeesasanserassenas 44

Abstract

The enumeration of trees with an arbitrary number, n, of terminal
nodes is explored. Three types of trees are considered; trees with at
least two branches from all but terminallnodes,:trees with at least two
but no more than m branches from all but terminal nodes, and trees with
exactly m branches from all but terminal nodes. The Tast type of tree
in thié list, which we call a "comp1e£e m-ary tfee", receives the major
emphasis'of the paper. Two approaches are pursued in the development
of explicit formulae which give the number of complete m—ary trees with
n terminal nodes, for arbitrary m and n. The first approach is along
the more conventional line of generating functions. We obtain the
generating function for m~ary trees with n terminal nodes. The gener-
ating function is a simple generalization of the result given in Knuth
[2], for binary trees.

The second approach takes a different tack. A tree grammar is
introduced which generates the complete m-ary trees as linear strings
of 1's and 0's. The tree grammar is a simple generalization of the
tree grammar specified by Scoins [4], for binary trees. Using the
notion of a syntax recognizer, theorems are proved which give the num-
ber of strings (in the language defined by the tree grammar) of length
ntk for arbitrary n and k which have at Teast k terminal nodes. This
is done for binary trees, and then for the general case of m-ary trees.
The explicit formulae sought are then derived as a special case of the
theorems. We also specify another formula for complete m-ary trees
which we believe to be valid, but for which we have not yet found a

proof. The result is provided since it is several orders of magnitude

faster in computing the number of trees than the other derived formu-
lae.

An appendix lists several of the values of the number of complete
m-ary trees for alternative values of m. The listings of computer pro-
grams used to compute these values are also included.

In considering the number of trees with at least two branches from
all but terminal nodes, the method of generating functions was used to
derive a formula for the number of such trees with n terminal nodes.

The results obtained for the complete m-ary trees provide upper
bounds on the number of parse trees which may be constructed for

strings from certain classes of context-free languages.

1. - Introduction

Tree structures play an important role in many areas of computer
science. For example, in the area of artificial intelligence one
often deals with search trees or proof trees, while in the area of
1anguage processing, one often deals with parse trees. It is useful
to obtain bounds on the number of trees of a given size which may be
generated during a process, for this often lends some insight into the
computational complexity of the process or the associated memory
requirements. Parsing algorithms normally have associated with them
the maximum time and space which may be required to recognize a string
of given length from some language. These bounds are usually propor-
tional to the length of the input string raised to some power. For a
context-free language, the time required to recognize a string is pro-
portional to n3, where n is the number of symbols in the string [1].
The recognition process implicity contains all parse trees. It is
sometimes of interest to consider the number of parse trees that are
implicitly contained for strings of a given length.

In this paper, we consider the enumeration of trees based upon
the number of terminal nodes that the trees may contain. Three types
of trees are considered. In Section 3 we consider the enumeration of
m-ary trees with n terminal nodes which have exactly m branches at all
but the terminal nodes. This type of tree, which we call a complete
m-ary tree, is in one-to-one correspondence with the representation of
an n-ary function or relation as the composition of m-ary functions or
relations. - For example, there are three distinct 3-ary trees with five

terminal nodes. The correspondence of these trees with the three

possible representations of R(a,b,c,d,e), a five~ary relation, as the

composition of ternary relations R, and R, is shown in Figure 1.

R
2
3 R2 e a¥ b
a b ¢ b ¢ d c d e
R1(Ry(a,b,c),d;e) Ri(asRy(b,c,d),e) Ri(asbsRy(c,dse))
Figure 1

Relatjon-Tree Correspondence

The Tinear strings shown in Figure 1 are simply the preorder [2] re-
presentation of the tree, if we remove the parentheses and commas.
Furthermore, since the scope of each relation is three, all parentheses
and commas may be deleted from the forms without causing any ambiguity.
It is therefore evident that the problem of determining the number of
ways an n-ary relation can be represented as the composition of m-ary
relations is equivalent to the problem of determining the number of
complete m~ary trees with n terminal nodes. This observation motivates
the approach to tree enumeration taken in Section 3.2.

In Section 4, we consider the enumeration of trees with n termin-
al nodes which have at least two branches from all but the terminal
nodes. This is the most general type of tree we consider. Finally,
in Section 5, we consider the enumeration of trees with n terminal
nodes which have at least two branches from all but the terminal nodes

but which have at most m branches from any node.

The results obtained for the complete m-~ary trees provide upper
bounds on the number of parse trees which may be obtained for certain

classes of context-free languages.

P

By a tree is meant a graph consisting of a set of points (nodes)
and Tines (edges) connecting these points sﬁch that between every pair
of nodes, a and b, there is exactly one sequence of edges (called a
path) which may be traversed in going from a to b. One restriction is
p]ated on such a path, namely, that no two consecutive edges in the
sequence may be the same. One particular node of each tree is called
the root. It is distinguished from the other nodes pictorially by
being the upper most node in the tree, In Figure 2 are given examples

of trees in which the root of each is labeled r.

(a) (b) (c)

Examples of Trees

The way in which we draw trees is to have every node except the
root entered from above by exactly one edge. The root is not entered
from above by any edge.

An m-ary tree is a tree in which each node is connected by an
edge to at most m nodes at a Tower level (its descendents) in the
tree. In Figure 2, (a) and (b) are 2~ary (binary) trees, while (c) is

an 3-ary (ternary) tree.

An ordered tree is a tree in which the horizontal ordering of the

SR

descendents of each node help to characterize the tree. Thus, in
Figure 2, (a) and (b) are distinct ordered trees, but if ordering were
not considered, they would be indistinguishable.

A multiple descendent tree is an ordered tree in which every node

has either zero descendents or more than one descendent. A node with

zero descendents is called a terminal node.

A multiple descendent m-ary tree is a multiple descendent tree in

which the number of descendents of any node is at most m.

A complete m-ary tree is an ordered m-ary tree in which every node

has zero or m descendents. In Figure 2, (a) and (b) are complete
binary trees, each with three terminal nodes, (c) is a ternary tree,
but it is not complete since it also contains a node with fewer than
three descendents, but more than zero descendents. In the remainder
of the paper, when no ambiguity will arise, we shall often write "m-ary
tree" or simple "tree" when we mean "complete m-ary tree".

m)

We shall denote by tn , the number of (complete) m-ary trees with

n terminal nodes. When it is clear from the context which m-ary trees
are being considered, we shall often write tn instead of tgm).
A context-free grammar (CFG) is an ordered four-tuple G = (VN,VT,P,S).

where
(a) VN is a finite, non-empty set of symbols, called non-terminal
symbols, or syntactic variables;
(b) Vi is a finite, non-empty set of symbols, called terminal

symbols;

(c) P is a finite, nonempty set of syntactic rules, called pro-
ductions, of the form U - x, where U ¢ VN’ and x is a non-
empty string of symbols from‘VNlJ VT' For a production
U ~ x, the number of symbols in the string x is called the

length of the production;

(d) .S is a special symbol in VN called the start symbol. It
designates the highest syntactic category in the grammar.

The string x directly produces the string y (x = y) if there

exists strings u and v such that x = uAvand y = uwv and A > w is in P.

The string x produces the string y (x L y) if x = y or there
exists a sequence of nonempty strings Wy oWyt oWy such that x = K
y =W and Wy = Wy = cee = W
A context~free language (CFL) is the set of strings X consisting

entirely of terminal symbols, which can be produced by a context-free
grammar, G, starting from the symbol S. The language defined by G,
denoted L(G), is therefore the set L(G) = {x| S % xand x ¢ VT+}
where V; denotes the set of all possible strings of terminal symbols
containing at least one symbol.
Let G = (VN,VT,P,S) be a context-free grammar. A parse tree for
the string x = a; *** a, in L{G) may be defined as follows:
(a) Every node of the tree has a label which is a symbol either
from VN or from VT;
(b) The tree will have n terminal nodes whose labels, ordered
from the left, are CIFERERT S respectively;
(c) A1l non-terminal nodes will be labeled with symbols from Vy;

(d) The label of the root is S;

(e) If nodes Pys+e+sPy are the direct descendents of node P, in

order from the left, with labels A],---,Ak, respectively,
then A ~» A1 cee Ak must be a production in P.
A CFG, G, is unambiguous if there exists a unique parse tree for
each element of L(G); otherwise, G is said to be ambiguous. If G is an
unambjguous CFG, then L(G) is an unambiguous CFL; otherwise, L(G) is an

ambiguous CFL.

3. Enumeration of Complete m-ary Trees with‘n Terminal Nodes

3.1 The Generating Function Approach

3.1.1 Binary Trees

We present here the development of an expression which gives the
number of complete binary trees with n terminal nodes. When one con-
siders the way in which binary trees may be combined to form larger
ones, certain relationships become apparent. In Figures 3(a) - 3(d)
are shown all the binary trees with 1, 2, 3, and 4 terminal nodes,
respectively. Dashed lines are used in this Figure to indicate the way
in which the trees were combined, and expressions are given which des-
cribe the relationships induced by these combinations. In Figure 3(a)
is depicted the binary tree with one terminal node, and we indicate
that t, = 1. In Figure 3(b) we see that two binary trees with one node
each are joined via a root node to produce a binary tree with two
terminal nodes. The relationship t, = 1ty is given to describe the
situation, The juxtoposition of the symbols t1t1 lexically describes
the graphical situation while the numerical value of their product,

t] . t] indicates the number of ways two trees with one terminal node
each may be combined to form a binary tree with two terminal nodes. In
Figure 3(c) the two possible trees with three terminal nodes are shown.
One of these is constructed by joining a tree with two terminal nodes
with a tree with one terminal node by means of a root node. This is
indicated byrt1t2, Thus, we have the relationship t3 = tzt1 + t1t2, to
indicate the number of ways that such trees may be constructed from

trees of one and two terminal nodes, respectively. Finally, Figure 3(d)

// \ 4 \ / \
® € B» ¢ » d
t oYy t, 4 t
t= t, = tt, ty = Loty + tyt,
(a) (b) (c)

/\ /! \ / \\ AN AN /
7 / \ /
N d % § o 6 » ¢ ¢
: t3t1 t2t2 t]t3
t4 = t3t1 + t2t2 + t]t3
(d)
Figure 3

The Complete Binary Trees with 1,2,3, and 4 Terminal Nodes

depicts the five ways that trees with one, two, and three terminal
nodes may be combined to form trees with four terminal nodes.

The manner of constructing arbitrarily large trees may be
generalized easily. The following expression represents the general

case:

If we let T2(x) be the generating function for binary trees, then we

have

- 2 3
(2) T2(x) = bt XDt + .
Squaring both sides of this equation, we obtain

It -

2 _ 2 , 3
Tg(x) = (t]tl)x + (t1t2 + tzt])x + (t1t3 bty +otaty

But, by Equation (1), the coefficients of K in this equation, for each

k, is Jjust tk, so that we have,

2 2 3 4
Tz(x) sz S T

Hence,

2
T2(X) T2(X) - t1X.
Making use of the fact that t] = 1, we have
' _ 2
(3) Ty(x) = Ty(x) + x.
Solving the quadratic equation for T2(x) we obtain

(4) T(x) = 1/2-1/2 (1§2> (_4)() i

where we have merely expanded the radical in the solution of the

quadratic equation. Thus,

2

To(x) = x+x"+2 x3

4 5 6

+ 14 x7 + 42 X + -

+ 5 x

10

It is clear from (2) and (4) that,

(1/2 n
tn = - 1/2 -4 , or
n
n-2
2’"&1 E (21+.|)
= i= >
(S)ﬁ t - , n22 or
¢ - -2(2n-3)!
n (n=2)! n!
L

The development presented above is essentially similar to that
given in Knuth [2] with minor differences. One difference worth noting
is that Knuth develops an equation for the number of ordered (not
necessarily complete) binary trees with n nodes while we have derived
an equation for the number of complete binary trees with n terminal
nodes. It turns out that the number of the former type of trees with
n nodes is equal to the number of the latter type of trees with n+l
terminal nodes, and hence with 2n+1 nodes. Riordan [5] also considers
the problem of obtaining the number of trees with n nodes, and has de-
veloped the generating function for such trees.

In his 1967 paper, Scoins [3] also developed Equations (1) and (3)
for ordered rooted trees. While he indicates that Equation (3) can be
solved to obtain explicit formulae for tn’ he states that these would
take longer to evaluate than the recurrence relation given by Equation
(1). However, in view of the relative simplicity of Equation (5), this
statement would appear to be unjustified.

We may find an asymptotic approXimation for t, by using Stirling's

Approximation,

11

ni g 1/E;r nnﬂ/2 e,

and the definition of the exponential function,

1im a n _ _=a
e (j B 3?) - €

It is easy to see that, asymptotically,
22“"‘2

n
n }A;?

This result is also stated in Knuth [2]. Furthermore, using (5), it

ne

(6) t

follows that

'tn+1 = 4 - EgT' , and hence, since Tim Eg_. > 0,
T nso Nt
n
(7) w
v
\

for large values of n.

The results obtained in this Section may be applied to obtain an
upper bound on the number of parse trees that may be constructed for
strings of a given length from context-free languages of the appropriate
type. In particular, if the productions of a CFG are all of length two,
then the parse trees will be complete binary trees. If the grammar is
unambiguous, then, by definition, any string of the corresponding
language will admit only a unique parse tree. But, regardless of the
degree of ambiguity of the grammar, a string of length n from the
language will admit at most tn parse trees if the grammar contains no

two productions with the same right-hand side. This latter restriction

12

is required to prevent the possibility of parse trees with the same
graphical form but with different labels. How closely the actual
bound for a given grammar comes to the theoretical upper bound will of
course depend upon the grammar.

A Tanguage in which all strings of length n have tn distinct parse
trees is defined by the grammar G = (VN,VT,P,S), where Vy = {S}, V =
{a,b}, and P is the set consisting of the four productions S - ab|aS]|
Sb|SS. Notice that each of the productions is of length two. This leads
to the property that in the parse tree, every S node will have two
descendgnts. By definition, the terminal symbols with respect to the
grammar will be terminal nodes in the parse tree. Furthermore, since
the productions display non-recursiveness, right-, left-, and double-
recursiveness, respectively, all possible complete binary trees will be
represented by the parse trees, with one trivial exception; there is no
such thing as a single node parse tree.

An additional application of the results of this Section is to
context-free grammars in Chomsky Normal Form; that is, to grammars
whose productions are of the form A~ B C, and D » e, where A, B, C,
and D designate non-terminals and e designates a terminal symbol. While
a grammar of this type contains productions of length one, no problems
result since each such production involves a terminal symbol. Therefore,
in a‘parse tree, the only nodes which have a single descendent are those
which lead directly to a terminal symbol, and hence, a terminal node.
If we think of these paired nodes as single terminal nodes, then the
parse trees may be regarded as complete binary trees, and hence the

bounds on the number of parse trees may be obtained.

13

3.1.2 Extension to m~ary Trees

The results obtained for binary trees will be extended here for
arbitrary m-ary trees. To motivate the extensions to the general case,
we shall consider ihe special case of ternary trees. Analogous relation-
ships of those shown for binary trees in Figure 3 are given for ter-

nary trees in Figure 4.

//.;;'%\\ /,/ - \\
g & B ¥ e
44 b 3 4 1 4
't3 = "C]tjt] t5 = ‘t3t-|‘t1 + t-itBt-l + t]t-]t3
(b) (c)

Figure 4

The Complete Ternary Trees with 1,3, and 5 Terminal Nodes

Several observations may be made from Figure 4., First, the summands
for t5 are each the product of three ierms. This will obviously
generalize to m-ary trees where summands will each be the product of
m terms. Second, the sum of the subscripts of each of the summands is
equal to the number of terminal nodes of the tree they describe, and
for a given tree size, all distinct permﬁtations of the subscripts in
a summand will appear as other summands in the same sum. This again
will generalize to m-ary trees. Third, while Figure 4 does not
illustrate this case, it is evident that t7 forr example, is equal to

14

i

[N—

and that in general, the summands for ti will include all possible
smaller tree sizes such that if i], 12, 13 are legitimate tree sizes
such that i, + i, + i, =1, then t, - t., - t. will appear as a summand.

1 2 3 1] i, Tig
Finally, we notice that for complete ternary trees, the number of ter-
minal nodes that a tree can have is 1, 3, 5, ... , 2n-1, ...

Thus, the relationships shown in Figure 4 may be generalized and

expressed as follows:

NC T D P PR n

2n+3 e ? ?

IRLPRLE

summed over all indices 1], 12, 13 for which

154, 1,, 1; ¢ 2o+l
i; +41, + i3 = 2nt3
i, = 2n, +1, »
5 R 1g3<3, ;20 J s
where t%3)= 1. This may be extended further to handle arbitrary m-ary

trees to be:

@ W+ SOtk et

11,...,im

summed over all indices 11"”’im for which

A

1511, e e e s 1mgn(m—1)+1
“ il+12+ o o e +im = n(m~1)+m %

= n (m-1)+1, 152jSm, nj>0 s
(m) <

P

where 3) =

The generating function fdr m-ary trees may now be specified.
This is just

(9) T (x) = t(m) X + t(m) m+t(m) 20-1, . %m)])+1xj(m;12fl |

15

where t§?%_1)+1 are the number of m-ary trees with j(m-1)+1 terminal

th power, and apply the multi-

nodes. Now, if we raise Tm(x) to the m
nomial theorem, the coefficients of " are just those given by (8).
Hence, the generating function for m-ary trees satisfies

(10) T, (x) = To (x) + x .
This equation may be solved for m=2, 3, and 4 in closed form. Indeed,
for m=2, Equation (4) results. For m=3 and 4, the formulae for cubic
and quartic equations may be used. However, the expansion of the

equations in powers of x is, at best, complex.

We note that, from (10),

1 (01 = L)1, for mod

dxn mX = dxn mX 3 or n
and

ST (01 = @01+ 1

Taking the 1imit as x>0, and noting that Tm(O) = 0, we may find the
values of Tm(“)(o)s But, we know that

Tm(n)(o) . ¢ (m)
n! n
Hence, it would be easy to find the values of tn(m) using, for example,
a programming language that permits formal manipulation of symbols,
such as in FORMAC, or LISP.

The material in this Section may be summarized by the following
theorem.

Theorem 1: Given a complete m-ary tree, where tg?%_1)+m
sents the number of m-ary trees with n(m-1)+m terminal nodes, then the

repre-

following holds.

16

=

3
s A

The generating function is given by

- (m) .
(9) T (x) = EE : tj(m-1)+1x3(m-])+1 9
j=0

and the generating function satisfies the functional equation

(10) T_(x) = To(x) + x

The values of tg?%_])+m are given by the relationships
(8) t{m = E : t, t; .- t; , n=0.
n(m-1)+m i 12 T

summed over all indices i], 12,...,im for which

(3

<., . <
]-11,,..,1m~n(m-1)+1

Y

4 1‘1+1' 2+--~~+1’m=n(m-1)+m

i.2n. (m=1)+1, iS58 2
U.,nJ()_,1Jm,nJCE

where t%m) = 1.
For m=2, n-1
(2) _ Z - 2
(1) t = , tn-iti . nz2
j=1
-3)1
and (5) tﬁz) = -2{%?5%%ﬁ1- » N2
2n-2
and (6) t, y 2 , for large n,
n Vin
and (7) t o = At , for large n.

In this Section, we have developed a recurrence relationship for
the number of m-ary trees with n terminal nodes. In Section 3.2.2, we

develop an explicit formula for the number of such trees. These

17

results may be applied to obtain the upper bound on the number of parse
trees that may be constructed for strings from special types of context-

)

free languages. In particular, tém is the upper bound on the number
of parse trees of a string of length n from a language generated by a
grammar whose productions ave all of length m, and in which no two pro-
ductions have the same right-hand side. As we did at the end of
Section 3.1.1, we may relax the restriction on the length of the pro-
ductions to allow, in addition to productions of length m, productions
of]éngth.one where such productions involve a terminal symbol. For
this type of grammar, tﬁm)is also the upper bound on the number of
parse trees for a string of length n.

For m equal to 2, we have given in Section 3.1.1 a grammar which

(2)

will realize all tn

parse trees for a given n. We may generalize
that grammar to produce a grammar with the same property for arbitrary
m and n. Such a grammar may be specified as G = (VN,VT,P,S) where
VN = {S}, VT = {a}, and the productions are all of length m having
the property that all the permutations of 0,1,..., up tom S's with m,

m-1,...,0 a's, respectively, appear as the right part, x, of a rule of

the form S-x.

18

i man?

'

3.2 New Proof Using a Recognizer

3.2.1 Binary Trees

An alternative derivation of the expression for computing the
number of complete binary trees with n terminal nodes is presented
here. The approach has been motivated by considering the parsing of
strings in the language defined by the grammar, G = (VN,VT,P,S) where
VN contains the sole non-terminal symbol S, which is also, therefore,
the start symbol of the grammar; VT contains two terminal symbols, 0
and 1; and P contains the following two productions, S -+ 0]1SS.

The strings in L(G), the language defined by G, correspond to the
complete binary trees, as is shown in Figure 5. The correspondence
shown in Figure 5 is derived from the fact that every string of L(G),
other than the string 0, is composed of a 1 followed by two substrings,
each of which is also a member of L{(G). Therefore, by corresponding
the left-most 1 of a string in L(G) to the root of a tree, and the left
and right well-formed substrings to the left and right subtrees of the
root, respectively, the correspondence shown in Figure 5 is 6btained,

Notice that the trees in Figure 5 are not the parse trees for ele-
ments of L(G), since the latter trees will be ternary trees in which
every S node has either one or three descendents. A parse tree for
the string 1011000 is given in Figure 6 to illustrate this fact. The
grammar given at the end of Section 3.1.1 defines a language for which

the parse trees correspond to all the complete binary trees.

19

1 1

0] . //N\\\\ ///\\\
Singl 1
1ng e 0// \ 0 0 /J
no e . \.\
tree 0 0 0 0 0
0 100 11000 10100

Figure 5

Correspondence Between L(G) and Complete Binary Trees

/)
I
N

1 0 1

Figure 6

" Parse Tree for an Element of L{G)

By identifying certain classes of strings of.L(G), and counting
the members in these classes, one gains information about the corres-
ponding classes of trees. For example, if one had an expression which
gave for arbitrary n the number of strings in L(G) which are of the

form

where an X indicates that the symbol is a zero or a one, then the same
expression gives the number of complete binary trees with n terminal
nodes, Such an expression is a special case of one which gives the

number of strings of the form

20

et it

which are in L(G). The more general formula will be developed first,
and then an expression which gives the number of complete binary trees
with n terminal nodes will be derived as a special case.

Let S(n,k) denote the set of all well-formed strings in L(G) which
have at least k terminal zeros, and are of length ntk. That is, the
strings of S(n,k) are of the form

XX...X 00...0

“

\ w) J
Y

n k

where an X indicates that the symbol is a zero or a one (as permitted
by well-formedness considerations), and n and k are integers such that
_05k5n+1, and n>0.

Let F(n,k) denote the number of elements in S(n,k). To determine
the number of well-formed strings of the form F(n,n-(k-1)), we require
the following Lemma:

Lemma 1.

Let F(n,k) denote the number of we]]-fofmed strings in L(G) with
at Teast k zeros in its rightmost configuration. Then, the following
relations hold: |

(11) F(2,0)

(12) F(n,0)

(13) F(n,n+1)

(14) F(n,k)

(15) F(n,k)

03
F(n=1,1) = F(n-2,2) for n23;

1 for nzO;

0 for k>n+1;

F(n-1,k+1) + F(n-1,k=-1) for n=2, 2<kn+1.

Proof.

Equation (11) is an obvious consequence of the grammar since all

21

well-formed strings must have an odd number of symbols. Equation (12)
is a consequence of the fact that every string in L(G) of length greater
than 1 must have two zeros at the right~hand end, for otherwise it is
not well-formed, To prove (13), let y be a string in S(n,n+1). If
n=0, then y=0 is the only possible string. If n>0, then the length of
the string y, denoted by |y|, is 2n+1. Any string of this length must
have n ones and n+l zeros. But, since y has ntl terminal zeros, the
fifst n symbols must all be ones, and there is only one such string y
for each n. To prove (14), we observe once again that any well-formed
string with n ones has exactly n+l zeros. Therefore, if k>ntl, then
there will not be enough ones in the string to satisfy the well-
formedness criterion.

We must now prove (15) to complete the proof of Lemma 1. Let y ¢
S(n,k). Then, y = XXo oo Xn0102 oo Ops and |y| = n+k, where X; =0
or 1 for each i, and Oj = 0 for each j, under the assumption that the
string is welli-formed according to the grammar. To test whether or not
a string is well-formed, we may work from right to Teft with the string,
and place each element on a stack. .Whenever we come to a case where
Xi = 1, we pop-up the last two entries on the stack. If they are not
zero's or S's, we place an S on the stack. Now consider the set S(n,k)
of well-formed strings. This set may be subdivided in an obvious man-
ner into the class of well-formed strings with Xn = 0, and the set of
well-formed strings with Xn = 1. Now consider the set of well-formed
strings with Xn = 1. If we are testing the well~formedness, the k
zero's go on a stack. When we reach Xn, it is a 1, and for the string
to be well-formed, clearly k=2. Therefore, we replace the Tast two

entries on the stack by an S. If we now return the entries on the

22

stack to the modified string, we have, y’= X] cee X S O3 ca Ok, or

n-1
a well-formed string with (n-1) X's and k-1 zero's (where S counts as
a zero) in L(G). Hence, we have
F(n,k) = F(n-1,k+1) + F(n-1,k-1) for k2.

Also, since we must have k<n+1, by Equation (14), the proof of the
Lemma is complete.

Lemma 2.

F(n,n-1) = n-1 for n=2.

Proof.

The proof is by induction on n. Let n=2, then we have, from
Equation‘(12) and (13),

F(2,1) = F(1,2) =1
Now suppose the Lemma is valid for some arbitrary value of N2, and
that n = N + 1. We have from Equation (15), from Equation (13), and the
induction hypothesis

F(N+1,N)

F(N+1,N)

I

F(N,N+1) + F(N,N-1), and
N.

n

This concludes the proof of Lemma 2.
We may now prove the following theorem required to develop the number
of complete binary trees.
Theorem 2.
Suppose n and k are integers such that 2°k= g .
Then -'?—% (n-i)

(16) F(n,n-(2k-1)) = (n-(2k-1)) . —=9
k!

Proof.

The theorem will be proved by induction on both n and k.

23

Let k=2. Then we want to show that for all n54,

(17) F(n,n=-3) = (n-3) - i=0

This will be shown by induction on n. Let n=4. Then we have, by
Equation (12),
F(4,1) = F(3,2);
and by Equation (15),
F(4,1) = F(2,3) + F(2,1);
and by Equation (12),
F(4,1) = F(2,3) + F(1,2);
and by Equation (13),
F(4,1) = 2.

This Tast equation may be written as,

0
TT.(“.,'”,

F(4’]) =] .,. _._j..n_o_—.——.-.— N
21

thereby proving the base of the induction on n. Now assume Equation
(17) holds for arbitrary N=4 and consider the case where n = N + 1,
We have, by Equation (15),

F(N+1,N~2) = F(N,N-1) + F(N,N~3) .
By Lemma 2, and the induction hypothesis,

0
TT o=
i=0_

21!

F(N+1,N=2) = (N~1) + {N-3) -

This last expression may be rewritten as

24

0
T ((n+1)-1)

F(N+1,N-2) = ((N+1)-3) - 1=?
2!

thereby concluding the induction on n and hence the base of the induc-
tion on k.

Now assume that Equation (16) is valid for some arbitrary value
of K2 and for all nZ2K. Notice, in the equations that follow, that
for some fixed value of k, the difference between the first and second
subscripts of F will remain fixed at 2k-1 for all values of n. We now

consider F(2K+2,2K+2-(2(K+1)~1)); that is, we shall prove the case for

k=K+1 by induction on n, so we begin by letting n=2(K+1). SimpTifying

the second subscript, we obtain

F(2K+2,2K+2~(2(K+1)=1)) = F(2K+2,1);
and from Equation (12),
F(2K+2,2K+2-(2(K+1)-1)) = F(2K+1,2).

But in this last expression, the difference between the subscripts of
F is 2K-1. This, therefore satisfies the induction hypothesis of
Equation (16). Therefore, for n=2K+2, Equation (16) is valid. This
concludes the base of the induction on n.

Assume now that Equation (16) is valid for some arbitrary value
of N22(K+1), and consider n=N+1. Consider the identity:

F(N+1,(N+1)-(2(K+1)=1)) = F(N,N-(2(K+1)-1)).

We have, by Equation (15) of Lemma 1,

(18) F(N+1,(N+1)~(2(K+1)=1)) = F(N,N~(2K~1)) + F(N,N~(2(K+1)-1)).

But, by the induction hypothesis for n,

K=1
TF(n-1)

F(NN-(2(K+1)=1)) = (N=(2(K+1)-1)) . i=0
(K+1)t

25

(N-2K-1) (N=K+1) = i=
(N+1) (K+1)1

In addition, by the induction hypothesis for k.

TT =0

F(N,N-(2K-T)) = (N-(2K-1)) - _i=0

K!
K-1
—[T-(N+1-1)
_ (N-2k+1) (k1) - =0
(N+1) (K+1)!

Thus, Equation (18) may be rewritten as

F(N+T,(N+1)-(2(K+1)~1))

=[:£N-2K+1)(K+1) b (N-2R-1) (N-K+1)] =0
(N+1) (N+T)

it
~
=
?
N
7~
S
o
1}
- o
+
w——d

[(NH) - (2(K+1)-1)]- 1=0
(K+1)!

This concludes the induction on n and on k, and hence, the proof
of Theorem 2.

Now that Equation (16) has been established, the number of com-
plete binary trees with n terminal nodes can be derived. In order for
a binary tree to have n terminal nodes, it must have n-1 non-terminal

nodes, or a total of 2n-1 nodes. As noted previously, F(n,k) represents

26

the number of well-formed strings with at least k zeros at the right.
Now, F(n,2) further represents the number of complete binary trees
with n+2 nodes. F(2n~3,2) is the number of complete binary trees with
n terminal nodes. Therefore, if we evaluate F(2n-3,2), we obtain tn.
We may use Equation (16) to find F(2n-3,2), since

F(2n-3,2) = F(2n-3,2n-3-(2k-1)),

where obviously, k=n-2. Therefore,

n-4
2 'ﬂ_ (2n-3-1)

1=0 , n33, and

c+
1}
-n
—
N
=
[]
w
w
™
~—
1

= 2
tn = , h=3.

We note that this is the same formula as given in Equation (5), Section

3.1.1,

27

3.2.2 Extension to m-ary Trees

In the previous Section, we developed, for binary trees, an
expression for computing F(n,n-(2k-1)) in general, and applied this to
obtain the values of téz) = F(2n-3,2). In this Section we treat the
general case of m-ary trees by deriving an expression for Fm(n,(m-l)n—
(mk=1)), the number of strings L(Gm), m-2, of length mn-(mk-1) which
have at least (m-1)n-(mk~1) terminal zeros. By L(Gm), we mean the
language defined by the grammar Gm=(Vn,VT,P,S) where Vnﬁ{S}, VT5{0,1},
and P consists of the productions:

S+0|18S .5,

R P
mS's
It is clear that the elements of L(Gm)'correspond to the complete m-ary
trees. Once we derive Fm(n,(mrl)nw(mk-1)), we apply the results to pro-
duce, as a special case, the number of complete m-ary trees with n ter-
minal nodes, tﬁm) . To support the development to be pursued, we need
a generalization of Lemma 1 given in the previous Section. Since it is
an obvious generalization of Lemma 1, it will be stated without proof.

Lemma 3.

Let Fm(n,k) denote the number of well-formed strings in L(Gm) with
at least k~zeros at the right~hand end of the string. Then,

(19) F (2,0) = F_(3,0) = -++ = F_(m,0) = 0, for m-2;

(20) F (n,0) = F_(n=1,1) = +=* = F_(n-m,m), for namt1;

(21) F_(n,n(m-1)+1) = 1, for n%0;

(22) Fm(n,k) = 0, for k>n(m-1)+1;

(23) F_(n,k) = F_(n-1,k+1) + F_(n~1,k-m+1), for n-2 and

mskSn(m-1)+1.

28

We now derive a result similar to Theorem 2, but for arbitrary m.

Theorem 3.
. > > > mk
Let m, k, and n be integers such that m-2, k~1, and n- =T Then,
7 A n-1
24 F @, @1l)n-G@k-1)) = Z: F (L, (m-1)i~(mk- (wt1)))
:l.=1\Ik
-
ok« 1 if (m-1) divides k
m~-1 y
where Nk =<ﬁ .
[i"—li] otherwise.
m-1
L
Proof.

The theorem will be proved by induction on n., Let m and k be

arbitrary integers such that k21, and m22,

r

mk .
) if (m~1) divides k

Letn=

[-‘—I—‘k-]+ 1 o.therwise.
m-1

o

Case 1.

In this case we suppose that m-1 divides k. We therefore, consider
m

the case where n = =5 . Then,
mkmk««
Fm(m, 'r-n':T (m-]) - (mk-T))
(20),
= F (m&l_,, 1, 2) .
m\ m-

%* 1P .
We use[zg] to denote the greatest integer in g .

fl
-1
3
L
‘5‘
=
w
—
e
fa)
=S
[}
o
<
m
O
g
jal}
(w
—alo
[}
=

29

This last equation can be rewritten, obviously, as,

T -]
=D F(is2)
= oo
This equation may be rewritten as,
mk

o B

Sz': :Fm(i,(m-l)i-(mk~(m"‘])))s
T

S 1

since when i =-%§T - 1, evaluation of the second subscript yields the

value of 2, as it should. But, this last sum is precisely of the form
of Equation (24),.where Ny = %%T- -1, and n = %%T" which is what we
wanted to show.

Case 2.

We now suppose that m-1 does not divide k. In this case therefore,
-

mk
m=1

(25) Fm([;"-l_il] + 1,(ﬁl_‘-l + 1) (m-1) - (mk—l))
k
= Fm(ﬁzl +1, [%_‘—l] (m-1) + m ~- mk) .

-+ 1. Then we have

we must consider n =

mk T Sl
—_— = + - -
Let 75 P+ o7 » Where o<r<m-1, p-1.
[mic |
Then —. l=p = E‘-k— - X
m-1 m-1 m-1 s SO that
ot |
mk
;‘:-1 (m-l) = mk"ro

30

Substituting this value into Equation (25), we obtain

e [mk

< <
m ol Tl mer) o, where 2-m-prem-1,

e

Now, by Lemma 3, Equation (20),

Fo (-"I]—:Lf-.i +1,m—r)=Fm ([%_kﬁ:l ,m—r+1>

This latter equation may bg rewritten, obviously, as

mk_ mk
m-1 m-1
k T I
(26) Fm([m_-l] +1,m-v>= szh,m—rﬂ) = Z,Fm(i,(m-1)1'-(mk-(m+1))).k
m&q .}kq
T = me R P

But, this last sum is precisely of the form of Equation (24), where

Nk = [%%T] , and n = [g%T] . This concludes the base of the induction.

Now assume the Theorem holds for some integer N such that N : %§T R

where m~2 and k21 are fixed integers. Suppose now that n = N+1. Then
we have, from Lemma 3, Equation (23),
Fm(N+1,(N+1)(m-1)~(mk—1))
= Fm(N,(N+1)(m-1)n(mk—1)+1) + Fm(N,(N+1)(m-])—(mkni) + 1-m)
Rewriting this equation, we have,
=-Fm(N,N(m~1)«(mk~(m+1))) + Fm(N,N(m~1)n(mk»1));

and, by the induction hypothesis on the second term, we have,
I L N1

= B RGeD- (k- (r))) +) Byl i) (ke m))).

i=Nk

This obviously becomes,

N
=Z Fm(i‘,i(m—l)—(mk—(m-i-l))), concluding the proof.

i==Nk

31

Theorem 4,
mk

Let m, k, and n be integers such that m=2, k1, and n- —

n-1
@7) (e~ (k- (mt1))) =

-1 12—1

m
1 ~ 1 if (m~1) divides k

.5 mk
'ﬁ[?:i] otherwise.

Prodf.

The Theorem will be proved by induction on k.

and n be arbitrary integers such that m~2 and n> - |

. m~1
3, Equation (21), it follows immediately that
n-1 n-1
.2[: F A1, @D+) = z[: 1.
1,=N, 1,=N,

Now assume that Equation (27) holds for some k21, and m22 and n3

where K, m, and n are integers. Then we have, from Thecrem 3,

ne1

pam Frlier, e (m=1)- (K1) 1)) =
Tee1 Nk
n-1 Tk

> S Rl mD)-(mk-1))).
T Neer TN

By the induction hypothesis, we have,

n-1 iK+1f]

Then

Let k=1, and let m
Then, by Lemma

mK_
m=1

Thus, concluding the proof of Theorem 4,

(m)

N the number of

We now derive as a special case of Theorem 4, t
m-ary trees with n terminal nodes. We observe that if a complete m-ary
tree has n terminal nodes, then n is an integer of the form
n=m(m-1)j, j =0, 1, 2, +++

In addition, if N is the total number of nodes in such a tree, then
N=(ml1) +mj, j=0,1,2, -~

Now,
tﬁm) = F(N=m,n)

and from the above relations that define the form of n in terms of m

and j, we have,

(28) t&T%m_1)j = F_(1+nd,m).

Applying Theorem 3 to Equation (28), we obtain

mj
tész-1)j = :E : Fo(1 1 (m=1)~(mj (m-1)~(m+1}))
=N (m-1)3

where in Equation (24), we have let n=1+mj, and k=j{(m-1). From

Theorem 4, we obtain,

mj 1(nnf-v-*!)j_;-l
%f:;fif.’e?é‘lf 2
(w)thmJ)j= ZZ:Z .

1) M- Y1V (1)1 T
for j21, m=2,

mt .
;:1 = 1 1if m-1 divides ¢

.mt] 'y
m] ot erwise.

33

Equation (29) gives an explicit formula for the number of m-ary trees

with n terminal nodes, where n is of the form m+(m-1)j, j=0, 1,...

3.3 A Conjectured Formula

In the previous sections we have derived explicit formulae for the
number of complete m-ary trees. We will, in this section, provide an
alternative formula for the number of complete m-ary trees. The for-
mula was developed by observation of how the complete trees are parsed.
However, we have not derived a rigorous proof that the formula is
correct. We have verified that the conjectured formula given below
works in a large number of cases. We provide the formula here since
the computer implementation of the conjectured formula is significantly
faster than computing the number of complete m-ary trees for either of
the formulae given in Section 3.1 or Section 3:2;

Conjecture

The number of complete m-ary trees with n terminal nodes, where n

is of the form m+(m~1)r, r=0, 1, 2,;00, and m=2, 3,:.,9 is given as

follows:
(m)
t 1
n-1
O Z: ey
n i,n 2
i=1
where,
(m)
ai,n = 0 for i>n-mtl,
(m)
a1 m = 1 for allm,

34

k

and ak,n = ZE::ai,n—m+T.

i=1
The reason for the ease in computation may be seen by observing

the following triangles for cases, m=2 and m=3.

R R
O

| 2 = 2 =1 e

| t§2)=5=1'+2+2

té2)=«14=1+ 3+ 5 + 5

té2)=42=1+ 4+ 9 + 14 + 14

(3) -
_ ty 1 = 1

(3) .
te” = 3

n
O
+
—
-+
el

t§3)=12=1+2+3+3+3

g3 =85 = 1+ 3+ 6+ 9+ 2+ 2+ 12

To indicate the speed in computing the conjectured formula, in
contrast to that of the formula in Section 3.2.2, to find the 3-ary
trees up to t2], it took in the order of minutes for the latter, while

the former was obtained in the order of milliseconds.

35

4. Enumerafion of Multiple Descendent Trees with n Terminal Nodes

We now consider trees with an arbitrary number of branches
emanating from each node. Specifically, we consider the enumeration
of multiple descendent trees which were defined in Section 2. We shall
derive an explicit formula for the generating function and, an explicit
formula for tn, the number of multiple descendent trees with exactly n
terminal nodes. Specifically, the result that we shall now prove is
stated as follows:

Theorem 5.

Let‘tn denote the number of multiple descendent trees with n

terminal nodes. Then, the generating function,

(30) T(x) = E tnxn is given by the functional equation
n=1

(31) 2T%(x) - (x~1) T(x) + x=0,

which may be solved to yield

(32) T(x) = XL - ‘Z() - 69"

Furthermore, t1=1, and for n>1, tn satisfies the relationship

(33)t Zt t +

1127 11212073 "0,
1]+12 n 11+12+13 1]+-~~+1n=n

for n>1.

An explicit formula for t_ is given by

36

-1, . .
| (34) dt, ;= - %En: (12)(2n-1‘-1)('6)2(1 " n>1

i=n
L 2n . .
@ L i 2(i-n)
- 1 (.) (.) (-6) >
; Lth = -7 gr; i 2n-1i »n=1.

Proof.
f The assumption that the trees are multiple descendent trees pre-

vents long strings of the forms shown in Figure 7.

| ¢ %
®

Figure 7

Trees Excluded from Consideration

§ The trees shown would be considered as mapping into the trees shown in

Figure 8.

) %
|
:
|
§

Figure 8

Multiple Descendent Trees

37

Now consider an arbitrary tree of the appropriate form. We
observe the way in which we can generate trees with n terminal nodes.
We can generate such trees by starting with a tree that has at its top-
most node exactly two branches, one with exactly three branches, pro-
ceeding in sequence to a tree with exactly n branches from the root.
Now, select an arbitrary tree from this set, say it has m branches
emanating from the root. Then, consider the nodes at the next level;
they consist of trees with a certain number of terminal nodes. The sum
total of all terminal nodes in each of the m trees must be equal to n.

Hence, we must have the relation

(33) tn=§ :ti1t12 + E t"1t"2t"3 Fooot 2 ti]“'
1] 12 i i i

1, 12,3 Ly
1]+12=n 1]+12+13=n 1]+°--+1n-n

as was to be shown.

Now consider the generating function for such trees,

(30) T(x) = Zm ¢ K,
n=1

where the t are given by Equation (33), it is easy to see that the mth

powef of the generating function has the form

CIRLOER glm
n=1
where
(36) tr(]m) toocee by
) . 1 m
. -f-lsa‘a-‘rp
11+12+=°»+1m=n

38

n,

Then, from Equations (33), (30), (35), and (36), it may be seen that

T(x)-E ,Ti(x) = X,
j=2

and hence,

) - TP S T(x) = x ,
i=0

which is readily seen to be
2

T(x) - ¥_TXX) =X .,
Hence, T(x) satisfies
(31) 2T2(x) - (x+1)T(x) + x = 0.
Solving this quadratic equation, we readily obtain (32). Expanding the
sum to obtain powers of X, we obtain (34). This completes the proof of

Theorem 5,

By computing the first few values of tn’ one finds that the generat-

ing function may be rewritten as

2 4 5 6

T(x) = x + X2 + 3x3 + 11x7 + 45x° + 1978 + «..

39

5. Enumeration of Multiple Descendent m-ary Trees with n Terminal Nodes

We consider now the number of multiple descendent m-ary trees with
n terminal nodes. Let the generating function for these trees be given
by

(37) U _(x) = ugm) x+u2(m) %2 + u3(m) X+ e
We seek a relationship which gives ugm), the number of multiple descen-
dent m-ary trees with n termina1 nodes. If nSm then it is obvious that
the number of such trees is equal to the number of multiple descendent
trees with n terminal nodes. An explicit formula for the latter has
been derived in the previous Section. For the present purposes, it

suffices to give the recurrence relationship for un(m):

(m) _ EE : (m) (m) . .. j:g: : (m) .. . (m)
(38) uo ui1 u1.2 Fooot “11 u1.n .
1,72 1,7,
1]+12=n i]+°--+in=n

for n<m.
If n>m, then by considering the possible subtrees of the root as we have
done previously, one obtains the relationship

(39) ul® = ST ST

1,72 1,72,
1]+12=n 11+1 +i,=n

m, for n>m.

Equation (38) and Equation (39), therefore, define the coefficients of

the generating function of Equation (37).

41

6. Conclusion

In this paper we have considered the enumeration of trees based
upon the number of terminal nodes that the trees may contain. The
types of trees considered were the multiple descendent trees, the
multiple descendent m-ary trees, and the complete m-ary trees. The
motivation for these explorations stemmed from the authors' considera-
tion of the composing of binary relations. Since the resulting strings
correspond to the complete m-ary trees, these trees have been treated
most extensively. Explicit formulae have been developed for the
complete m-ary trees both from the generating function and the syntax
recognition approaches. Certain ways of analyzing the linear sf?ings
representing the trees have also led us to a conjectured formula.

To compiete the study of the enumeration of the trees based on
the number of terminal nodes, the authors have developed the explicit
formula for the number of multiple descendent trees and a recurrence
relationship for the number of multiple descendent m-ary trees. The
latter result lends itself to further extension in that it is likely
that an explicit formula may be obtained.

The results obtained on the number of complete m-ary trees were
used to obtain upper bounds on the number of parse trees which may
be constructed for strings of given length from context~free languages

of specified types.

42

[1]

[2]

[3]

[4]

[5]

References

Hopcroft, J. E., and J. D. Ullman. Formal Languages and Their
Relation to Automata. Addison-Wesley, Reading, Mass., 1969.

Knuth, D. E. The Art of Computer Programming, Volume 1/Funda-
mental Algorithms. Addison-Wesley, Reading, Mass., 1968,
pp. 388-389.

Scoins, H. I. "Linear Graphs and Trees." 1In: Michie, D. (Ed.).
Machine Intelligence 1, American Elsevier, New York, 1967,
pp. 3-15.

Scoins, H. I. "Placing Trees in Lexicographic Order." In:

‘Michie, D. (Ed.). Machine Intelligence 3, American Elsevier,
New York, 1968, pp. 43-60.

Riordan, J. Introduction to Combinatorial Analysis. John Wiley
and Sons, New York, 1958.

43

Appendix

This Appendix includes the program written in FORTRAN V to
implement the formula given in Section 3.2.2, and the program written
in MAD to implement the formula in Section 3.3. Both programs were
written for and executed on the UNIVAC 1108.

We also include the computer printouts of the MAD program as Table
Al through Table A19. In these Tables, we have, in the column labeled
SUM, given the values of t§k) for each value of k in the range 25k<29,
and values of j = k+(k-1)(i-1), where 15in for the value of n indicated
in each Table. In Tables Al through A4 and Table A9, several of the
values are asterisked to indicate that these were verified by the
FORTRAN program. Complete verification of the values was not attempted

because to do so would have required excessive computer time.

44

IMPLICIT INTEGER(A=Z)
DIMENSION BASE(200)LB(200),UB(200)
\ 1 REAND(55100)MsN
: WRITE(6s101)MsNeM
J=1
M1=M=1
g 2 SuUM=Q
. IMAX=M1%d
LB(IMAX) = IMAX+J=1
& UB(IMAX)=IMAX+J
| IF(IMAX.EQ.,1)G0 TO 11
’ I-ZIMAX=1
) 3 KzI/M1
| KK=M1 %K
} IF(1.,EQ.KK)GO TO 4
BASE (I)=M*xI/M1
o GO TO 5
[4 BASE (I)=MxK=}
5 IF(I.LE,1)60 TO 6
“ Izl=1
E GO TO 3
6 IZIMAX=1
. 7 LB(I)=BASE(I)
i UB(I)=LB(I+1)=1
: IF(1.EQ,1)G0 TO 8
Izil=1
1 GO TO 7
8 SUMz=SUM+UB(1)
I=2
9 IF(LB(I).EQ.,UB(I))GO TO 10
LB(I)=LB(I)+1
I=zl=1
. GO 70 7
| 10 IF(I.EQ,IMAX)GO TO 12
N Iz1+1
GO TO 9
; 11 SUM=UB(1)
| 12 Kz=M+IMAX
WRITE(6+,102)KsSUM
IF(J.EQ.N)GO TO 1
Jad+l
60 10O 2
100 FORMAT(I2,1X%Xs12)
101 FORMAT(1H1:9X,*THE FOLLOWING TABLE GIVES THE NUMBER OF %:12,
i t=ARY TREES®,/,10Xs *WITH K TERMINAL NODES (1ST ',I2,
2 ¢ TERMS IN THE SEQUENCE)*s///»25Xs *K®,4X, *NUMBER OF TREES®,
ey 3 /725X V179 15Xs T1% e/ /0 2HXe12015X0%17)
‘ 102 FORMAT{1HO,23X»12:4Xs112)
END

Figure Al,

FORTRAN V Program for the Number of m-ary Trees

45

NORMAL MODE IS INTEGER
DIMENSION A(100%100),5UM(100)
SeEGIN o
o READ DATA NypKsSKIP
Kl=Ke=1
K2=2%K=3
K3=K1=K2
Allel)=1
THROUGH L1¢FOR Iz151,1,6.K
L1 A(2,I)=1
THROUGH L3sFOR I=3s1+1.G.N
\J\,J:I*K]."KZ
*kx%x K1 AND K2 WERE COMPUTED TO SPEED UP THE
*kk COMPUTATION OF THE UPPER LIMITs K+(I=3)%x(K=1),
THROUGH L2:FOR J=i,1sJ.GeJd
TTA(Is =0
THROUGH L2,FOR L=151sL.6eJ
Le A(TsJ)=A(TI) +A(I=1sL)
MIZJJ+1
M2ZJJ+HK A
 THROUGH L3,FOR MzM1:1sM.GeM2
L3 A{IeM)zA(IsM=1)
THROUGH LU4,FQR Iz1,1sI,G,N
SUM(I)=0
JUZTKLI4K3
THROUGH LU:FOR J=lelrsJeGodd
Lo SUMIT)=SUMII)+A(TI,d) SR
7 " "PRINT FORMAT$1H1,510,16HTABLE OF VALUES x%
PRINT FORMATS$S1H4s2HKz ,12s3HyN=s 12 /%3 sKsN_
PRINT FGRMAT$51291H1¢5993HSUMy/*$
THROUGH L5:FOR I= 1 1¢1.6.N
T WHENEVER SKIPLE,
JUzIxK14K3 . e
"PRINT FORMATS /»12,112,3H = ,10111%%,1,SUM(I)»
1 AlTel)soaA(IsJd)
] OTHERWISE ™
PRINT FORNAT$5119129112*$9IPSUM(I)
END OF CONDITIOMNAL

)

TRANSFER TO BEGIN
END OF PROGRAM _

Figure A2.

MAD Program for the Number of m-ary Trees

46

I SUM

1 1%
z 2%
- 3 5% 1 S i
‘é i 14 *
5 42* 1 i *
e) 132% 2 ¥
[7 h29* 3 1e%*
! & 1430 % 4 yi ¥
9 4862 * 5 275 %
oy 10 16796 * € 1ap8 *
i 11 56T7R6 * 7 7752 *
’ ie 208012 & 4320 *
. 12 742900 G 2up675 *
| 14 2074440 10 1420715 *
A 15 9694BLS 11 Bl41n640
16 35357670 12+ S0u67108
~ 17 129644790 13 3008306572
g 18 477638700 14 1822766L20
19 1767263190 15 11124755664
o~ 20 6564120420
|
TABLE Al. K=2, N=20 TABLE A2. K=3, N=15
!
;
g S
1 SUM 1 SUM
2 4 T 5%
? 3 22 * 3 35 %
: 4 140 * 4 25 *
: 5 969 % 5 2530 *
6 7084 ® 6 23751 *
7 53820 7 231880
e 420732 8 2330445
9 3362260 9 23950355
”@ 10 27343888 10 250543370
TABLE A3. K=4, N=10 TABLE A4. K=5, N=10

* Results verified with FORTRAN V progran.

47

I SUM 1 S1iM
1 1 ! 1
2 6 > 7
3 51 3 70
4 506 i 819
5 5481 5 10472
&) 62832 6 141778
7 749398 7 1997666
L 9203634 & 28989675
9 115607310 9 430321633
10 1478314266 10 6503352856
TABLE "‘A5. K=6, N=10 TABLE A6. K=7, N=10
I SUM 1 SUM
Y S 1 1
2 S - B 2 9
L3 %2 | (3 117
4 1240 ¢ i 1785
5 18278 | ‘5 29799
6 © 28538% | P6 527085
T 4638348 S 9706503
8 77652024 ¢ & 184138713
9 1329890705 9 3573805950
10 23190029720
TABLE A7. K=8, N=10 TABLE A8. K=9, N=0O

48

1 SUM 1 1yt
1 ix 1 1
& 10% & 11
2 1454 3 175
4 247 Ox i 5311
5 46060 3} 3211
£ 910252 G 1439458
7 187350855 7 33670540
é 3970649550 & 793542107

9 19022518054

g 80612835715

TABLE A9. K=10, N=9 TABLE A10. K=11, N=9
I SuM 1 SuM
1 1 1 1
2 12 2 13
3 210 K} 247
4 u324 L 5525
5 97527 5 1354068
& 2331924 & 3518515
7 58068792 7 95223414
& 1489899060 & 2655417765
TABLE All. K=12, N=8 TABLE Al2. K=13, N=8

* Results verified with FORTRAN V program.

49

1 SUM I Subt
1 1 1 1
: 16 2 15
3 287 z 250
4 6930 4 8555
5 183379 5 243090
€ 5145336 6 7324678
7 150374056 7 229906300
& 4528488310 & 7435946115
TABLE A13. K=14, N=8 TABLE Al4. K=15, N=8
1 SUM 1 SUM
B ST T I S
5 16 "2 17
3 ... 376 | L3 425
4 ‘10416 | e 12529
5 316316 iS5 404957
6 10187344 ! 6 13581945
7 341772552 7 495729741
58 11815724400 8 18243038385
TABLE Al5. K=16, N=8 TABLE Al6. K=17, N=8

50

i
i
! 1 SUM
1 Sk
B 1 1
! P 18 1 H
J 3 477 2 1%
4 14910 3 530
“ 5 511038 4 17575
: & 16578196 5 636TUS
! 7 647859273 6 chye721e
- & 2ebk01476771 7 759512631
!
TABLE Al7. K=18, N=8 TABLE A18. K=19, N=7
i
J
i
H
1 SUM
1 i
b 3 . 20
3 590
% 4 20540
! 5 784245
6 31763004
7 863917560
TABLE A19. K=20, N=7

