188 research outputs found

    An X-ray and Optical Study of Matter Distribution in the Galaxy Cluster A 2319

    Get PDF
    A new analysis of velocity distribution, optical photometry and X-ray surface brightness from ROSAT PSPC data of the galaxy cluster A 2319 is presented. The temperature profile derived from ASCA data (Markevitch et al.,1996) is taken into account. A method to check the hydrostatic model in the presence of a temperature gradient is proposed. Consistency of the hydrostatic isothermal model and the explanation of the "beta-discrepancy" are discussed. Galaxy and gas density profiles of the main component A 2319A are derived, allowing for the effect of the secondary component A 2319B. The inadequacy of a polytropic model, which would produce a binding mass decrease with respect to the isothermal beta-model, is discussed. A simple interpolation of the temperature profile provides instead an increase of the binding mass and a lower baryon fraction thus mitigating the "baryon catastrophe". Assuming as typical the value f_b ~ 0.2, a comparison with the most recent estimate of Omega_b(nucl) implies for the cosmological parameter Omega_o less than 0.4.Comment: 7 pages, 2 tables, 8 figure

    The X-ray Luminosity Function of Bright Clusters in the Local Universe

    Full text link
    We present the X-ray luminosity function (XLF) for clusters of galaxies derived from the RASS1 Bright Sample. The sample, selected from the ROSAT All-Sky Survey in a region of 2.5 sr within the southern Galactic cap, contains 130 clusters with flux limits in the range ~ 3-4 x 10^-12 ergs/cm^2/s in the 0.5-2.0 keV band. A maximum-likelihood fit with a Schechter function of the XLF over the entire range of luminosities (0.045 - 28. x 10^44 ergs/s), gives alpha = 1.52 +/- 0.11, L_* = 3.80 +0.70 -0.55 x 10^44 ergs/s, and A = 5.07 +/- 0.45 x 10^-7 Mpc^-3 (10^44 ergs/s)^(\alpha-1). We investigate possible evolutionary effects within the sample, out to our redshift limit (z ~ 0.3), finding no evidence for evolution. Our results are in good agreement with other local estimates of the XLF, implying that this statistic for the local universe is now well determined. Comparison with XLFs for distant clusters (0.3 < z < 0.6), shows that no evolution is present for L_X < 10^{44} ergs/s. However, we detect differences at the 3 sigma level, between our local XLF and the distant one estimated by Henry et al. for the EMSS sample. This difference is still present when considering the EMSS sample revised by Nichol et al.Comment: 13 pages with 3 figures included, LaTex, aaspp4.sty and epsf.sty, accepted for publication in ApJ Letters, only minor changes, added reference

    Is the Butcher-Oemler effect a function of the cluster redshift ?

    Get PDF
    Using PSPC {\it Rosat} data, we measure x-ray surface brightness profiles, size and luminosity of the Butcher-Oemler (BO) sample of clusters of galaxies. The cluster x-ray size, as measured by the Petrosian r_{\eta=2} radius, does not change with redshift and is independent from x-ray luminosity. On the other hand, the x-ray luminosity increases with redshift. Considering that fair samples show no-evolution, or negative luminosity evolution, we conclude that the BO sample is not formed from the same class of objects observed at different look-back times. This is in conflict with the usual interpretation of the Butcher-Oemler as an evolutionary (or redshift-dependent) effect, based on the assumption that we are comparing the same class of objects at different redshifts. Other trends present in the BO sample reflect selection criteria rather than differences in look-back time, as independently confirmed by the fact that trends loose strength when we enlarge the sample with x-ray selected sample of clusters. The variety of optical sizes and shapes of the clusters in the Butcher-Oemler sample, and the Malmquist-like bias, are the reasons for these selection effects that mimic the trends usually interpreted as changes due to evolution.Comment: ApJ, in press, scheduled on May, 10 issue. 17 pages & 11 figure

    Off-Center Collisions between Clusters of Galaxies

    Full text link
    We present numerical simulations of off-center collisions between galaxy clusters made using a new hydrodynamical code based on the piecewise-parabolic method (PPM) and an isolated multigrid Poisson solver. We have performed three gas-only high-resolution simulations of collisions between equal-mass clusters with different values of the impact parameter (0, 5, and 10 times the core radius). With these simulations we have studied the observational appearance of the merging clusters and the variation in equilibration time, luminosity enhancement during the collision, and structure of the merger remnant with varying impact parameter. Observational evidence of an ongoing collision is present for 1-2 sound crossing times after the collision, but only for special viewing angles. The remnant actually requires at least five crossing times to reach virial equilibrium. Since the sound crossing time can be as large as 1-2 Gyr, the equilibration time can thus be a large fraction of the age of the universe. The final merger remnant is very similar for impact parameters of zero and five core radii. It possesses a roughly isothermal core, with central density and temperature twice the initial values. Outside the core the temperature drops as r^-1, and the density roughly as r^-3.8. The core radius shows a small increase due to shock heating during the merger. For an impact parameter of ten core radii the core of the remnant possesses a more flattened density profile, with a steeper dropoff outside the core. In both off-center cases the merger remnant rotates, but only for the ten-core-radius case does this appear to have an effect on the structure of the remnant.Comment: 26 pages, 15 figures included, submitted to ApJ; for color figures and movies see http://www.astro.virginia.edu/~pmr7u/paper_offctr.htm

    Extragalactic Foregrounds of the Cosmic Microwave Background: Prospects for the MAP Mission

    Get PDF
    (Abridged) While the major contribution to the Cosmic Microwave Background (CMB) anisotropies are the sought-after primordial fluctuations produced at the surface of last scattering, other effects produce secondary fluctuations at lower redshifts. Here, we study the extragalactic foregrounds of the CMB in the context of the upcoming MAP mission. We first survey the major extragalactic foregrounds and show that discrete sources, the Sunyaev-Zel'dovich (SZ) effect, and gravitational lensing are the most dominant ones for MAP. We then show that MAP will detect (>5 sigma) about 46 discrete sources and 10 SZ clusters directly with 94 GHz fluxes above 2 Jy. The mean SZ fluxes of fainter clusters can be probed by cross-correlating MAP with cluster positions extracted from existing catalogs. For instance, a MAP-XBACs cross-correlation will be sensitive to clusters with S(94GHz)>200mJy, and will thus provide a test of their virialization state and a measurement of their gas fraction. Finally, we consider probing the hot gas on supercluster scales by cross-correlating the CMB with galaxy catalogs. Assuming that galaxies trace the gas, we show that a cross-correlation between MAP and the APM catalog should yield a marginal detection, or at least a four-fold improvement on the COBE upper limits for the rms Compton y-parameter.Comment: 27 LaTeX pages, including 5 ps figures and 2 tables. To appear in ApJ. Minor revisions to match accepted version. Color figures and further links available at http://www.astro.princeton.edu/~refreg

    A Flux-limited Sample of Bright Clusters of Galaxies from the Southern Part of the ROSAT All-Sky Survey: the Catalog and the LogN-LogS

    Get PDF
    We describe the selection of an X-ray flux-limited sample of bright clusters of galaxies in the southern hemisphere, based on the first analysis of the ROSAT All-Sky Survey data (RASS1). The sample is constructed starting from an identification of candidate clusters in RASS1, and their X-ray fluxes are remeasured using the Steepness Ratio Technique. This method is better suited than the RASS1 standard algorithm for measuring flux from extended sources. The final sample is count-rate-limited in the ROSAT hard band (0.5-2.0 keV), so that due to the distribution of NH, its effective flux limit varies between about 3-4 x 10**-12 ergs cm**-2 s**-1 over the selected area. This covers the Decl<2.5 deg part of the south Galactic cap region (b<-20 deg) - with the exclusion of patches of low RASS1 exposure time and of the Magellanic Clouds area - for a total of 8235 deg**2. 130 candidate sources fulfill our selection criteria for bonafide clusters of galaxies in this area. Of these, 101 are Abell/ACO clusters, while 29 do not have a counterpart in these catalogs. Of these clusters, 126 (97%) clusters have a redshift and for these we compute an X-ray luminosity. 20% of the cluster redshifts come from new observations, as part of the ESO Key Program REFLEX Cluster Survey that is under completion. Considering the intrinsic biases and incompletenesses introduced by the flux selection and source identification processes, we estimate the overall completeness to be better than 90%. The observed number count distribution, LogN-LogS, is well fitted by a power law with slope alpha = 1.34 +/- 0.15 and normalization A = 11.87 +/- 1.04 sr**-1 (10**-11 ergs cm**-2 s**-1)**alpha, in good agreement with other measurements.Comment: 27 pages, 8 figures and 3 tables included, LaTex, emulateapj.sty and epsf.sty, accepted for publication in ApJ: scheduled for the March 20, 1999, Vol.514. The cluster catalog is available at http://www.merate.mi.astro.it/~degrand

    Characteristic Energy of the Coulomb Interactions and the Pileup of States

    Get PDF
    Tunneling data on La1.28Sr1.72Mn2O7\mathrm{La_{1.28}Sr_{1.72}Mn_2O_7} crystals confirm Coulomb interaction effects through the E\sqrt{\mathrm{E}} dependence of the density of states. Importantly, the data and analysis at high energy, E, show a pileup of states: most of the states removed from near the Fermi level are found between ~40 and 130 meV, from which we infer the possibility of universal behavior. The agreement of our tunneling data with recent photoemission results further confirms our analysis.Comment: 4 pages, 4 figures, submitted to PR

    DT/T beyond linear theory

    Full text link
    The major contribution to the anisotropy of the temperature of the Cosmic Microwave Background (CMB) radiation is believed to come from the interaction of linear density perturbations with the radiation previous to the decoupling time. Assuming a standard thermal history for the gas after recombination, only the gravitational field produced by the linear density perturbations present on a Ω1\Omega\neq 1 universe can generate anisotropies at low z (these anisotropies would manifest on large angular scales). However, secondary anisotropies are inevitably produced during the nonlinear evolution of matter at late times even in a universe with a standard thermal history. Two effects associated to this nonlinear phase can give rise to new anisotropies: the time-varying gravitational potential of nonlinear structures (Rees-Sciama RS effect) and the inverse Compton scattering of the microwave photons with hot electrons in clusters of galaxies (Sunyaev-Zeldovich SZ effect). These two effects can produce distinct imprints on the CMB temperature anisotropy. We discuss the amplitude of the anisotropies expected and the relevant angular scales in different cosmological scenarios. Future sensitive experiments will be able to probe the CMB anisotropies beyong the first order primary contribution.Comment: plain tex, 16 pages, 3 figures. Proceedings of the Laredo Advance School on Astrophysics "The universe at high-z, large-scale structure and the cosmic microwave background". To be publised by Springer-Verla

    A pan-chromatic view of the galaxy cluster XMMU J1230.3+1339 at z=0.975 - Observing the assembly of a massive system

    Full text link
    We present a comprehensive galaxy cluster study of XMMU J1230.3+1339 based on a joint analysis of X-ray data, optical imaging and spectroscopy observations, weak lensing results, and radio properties for achieving a detailed multi-component view of this newly discovered system at z=0.975. We find an optically very rich and massive system with M200\simeq(4.2±\pm0.8)×\times10^14 M\sun, Tx\simeq5.3(+0.7--0.6)keV, and Lx\simeq(6.5±\pm0.7)×\times10^44 erg/s, for which various widely used mass proxies are measured and compared. We have identified multiple cluster-related components including a central fly-through group close to core passage with associated marginally extended 1.4GHz radio emission possibly originating from the turbulent wake region of the merging event. On the cluster outskirts we see evidence for an on-axis infalling group with a second Brightest Cluster Galaxy (BCG) and indications for an additional off-axis group accretion event. We trace two galaxy filaments beyond the nominal cluster radius and provide a tentative reconstruction of the 3D-accretion geometry of the system. In terms of total mass, ICM structure, optical richness, and the presence of two dominant BCG-type galaxies, the newly confirmed cluster XMMU J1230.3+1339 is likely the progenitor of a system very similar to the local Coma cluster, differing by 7.6 Gyr of structure evolution.Comment: 26 pages, 14 color figures, accepted for publication in A&
    corecore