890 research outputs found
Towards Mixed Gr{\"o}bner Basis Algorithms: the Multihomogeneous and Sparse Case
One of the biggest open problems in computational algebra is the design of
efficient algorithms for Gr{\"o}bner basis computations that take into account
the sparsity of the input polynomials. We can perform such computations in the
case of unmixed polynomial systems, that is systems with polynomials having the
same support, using the approach of Faug{\`e}re, Spaenlehauer, and Svartz
[ISSAC'14]. We present two algorithms for sparse Gr{\"o}bner bases computations
for mixed systems. The first one computes with mixed sparse systems and
exploits the supports of the polynomials. Under regularity assumptions, it
performs no reductions to zero. For mixed, square, and 0-dimensional
multihomogeneous polynomial systems, we present a dedicated, and potentially
more efficient, algorithm that exploits different algebraic properties that
performs no reduction to zero. We give an explicit bound for the maximal degree
appearing in the computations
High resolution simulations of the reionization of an isolated Milky Way - M31 galaxy pair
We present the results of a set of numerical simulations aimed at studying
reionization at galactic scale. We use a high resolution simulation of the
formation of the Milky Way-M31 system to simulate the reionization of the local
group. The reionization calculation was performed with the post-processing
radiative transfer code ATON and the underlying cosmological simulation was
performed as part of the CLUES project. We vary the source models to bracket
the range of source properties used in the literature. We investigate the
structure and propagation of the galatic ionization fronts by a visual
examination of our reionization maps. Within the progenitors we find that
reionization is patchy, and proceeds locally inside out. The process becomes
patchier with decreasing source photon output. It is generally dominated by one
major HII region and 1-4 additional isolated smaller bubbles, which eventually
overlap. Higher emissivity results in faster and earlier local reionization. In
all models, the reionization of the Milky Way and M31 are similar in duration,
i.e. between 203 Myr and 22 Myr depending on the source model, placing their
zreion between 8.4 and 13.7. In all models except the most extreme, the MW and
M31 progenitors reionize internally, ignoring each other, despite being
relatively close to each other even during the epoch of reionization. Only in
the case of strong supernova feedback suppressing star formation in haloes less
massive than 10^9 M_sun, and using our highest emissivity, we find that the MW
is reionized by M31.Comment: Accepted for publication in ApJ. 14 pages, 4 figures, 1 tabl
CPT symmetry and antimatter gravity in general relativity
The gravitational behavior of antimatter is still unknown. While we may be
confident that antimatter is self-attractive, the interaction between matter
and antimatter might be either attractive or repulsive. We investigate this
issue on theoretical grounds. Starting from the CPT invariance of physical
laws, we transform matter into antimatter in the equations of both
electrodynamics and gravitation. In the former case, the result is the
well-known change of sign of the electric charge. In the latter, we find that
the gravitational interaction between matter and antimatter is a mutual
repulsion, i.e. antigravity appears as a prediction of general relativity when
CPT is applied. This result supports cosmological models attempting to explain
the Universe accelerated expansion in terms of a matter-antimatter repulsive
interaction.Comment: 6 pages, to be published in EPL (http://epljournal.edpsciences.org/
Le traumatisme de guerre dans le roman européen (1920 - 1940) : entre “hystérie masculine” et “mythe de la guerre”, problèmes d’une histoire culturelle
Actes du XXXVe Congrès de la SFLGC, Université de Bourgogne, 2008</p
V.I. Vernadsky and the noosphere concept: Russian understandings of society-nature interaction
Recent Russian legislative and policy documentation concerning national progress towards sustainable development has suggested that the attainment of such a state would represent the first stage in the development of the noosphere as outlined by the Russian scientist Vladimir Ivanovich Vernadsky (1863–1945). This paper explores Vernadsky’s model of evolutionary change through a focus on his work on the biosphere and noosphere in an attempt to further understanding of the way in which Russia is approaching the concept of sustainable development in the contemporary period. It is argued that the official Russian interpretation of the noosphere idea tends to obscure the evolutionary and materialist foundations of Vernadsky’s biosphere–noosphere conceptualisation. At the same time, the concluding section of the paper suggests that the scope of Vernadsky’s work can be used to stimulate the search for a more coherent approach to work in areas of sustainable development and sustainability across the span of the social and physical sciences
"Dark energy" in the Local Void
The unexpected discovery of the accelerated cosmic expansion in 1998 has
filled the Universe with the embarrassing presence of an unidentified "dark
energy", or cosmological constant, devoid of any physical meaning. While this
standard cosmology seems to work well at the global level, improved knowledge
of the kinematics and other properties of our extragalactic neighborhood
indicates the need for a better theory. We investigate whether the recently
suggested repulsive-gravity scenario can account for some of the features that
are unexplained by the standard model. Through simple dynamical considerations,
we find that the Local Void could host an amount of antimatter
() roughly equivalent to the mass of a typical
supercluster, thus restoring the matter-antimatter symmetry. The antigravity
field produced by this "dark repulsor" can explain the anomalous motion of the
Local Sheet away from the Local Void, as well as several other properties of
nearby galaxies that seem to require void evacuation and structure formation
much faster than expected from the standard model. At the global cosmological
level, gravitational repulsion from antimatter hidden in voids can provide more
than enough potential energy to drive both the cosmic expansion and its
acceleration, with no need for an initial "explosion" and dark energy.
Moreover, the discrete distribution of these dark repulsors, in contrast to the
uniformly permeating dark energy, can also explain dark flows and other
recently observed excessive inhomogeneities and anisotropies of the Universe.Comment: 6 pages, accepted as a Letter to the Editor by Astrophysics and Space
Scienc
Background discrimination capabilities of a heat and ionization germanium cryogenic detector
The discrimination capabilities of a 70 g heat and ionization Ge bolometer
are studied. This first prototype has been used by the EDELWEISS Dark Matter
experiment, installed in the Laboratoire Souterrain de Modane, for direct
detection of WIMPs. Gamma and neutron calibrations demonstrate that this type
of detector is able to reject more than 99.6% of the background while retaining
95% of the signal, provided that the background events distribution is not
biased towards the surface of the Ge crystal. However, the 1.17 kg.day of data
taken in a relatively important radioactive environment show an extra
population slightly overlapping the signal. This background is likely due to
interactions of low energy photons or electrons near the surface of the
crystal, and is somewhat reduced by applying a higher charge-collecting inverse
bias voltage (-6 V instead of -2 V) to the Ge diode. Despite this
contamination, more than 98% of the background can be rejected while retaining
50% of the signal. This yields a conservative upper limit of 0.7
event.day^{-1}.kg^{-1}.keV^{-1}_{recoil} at 90% confidence level in the 15-45
keV recoil energy interval; the present sensitivity appears to be limited by
the fast ambient neutrons. Upgrades in progress on the installation are
summarized.Comment: Submitted to Astroparticle Physics, 14 page
The EDELWEISS Experiment : Status and Outlook
The EDELWEISS Dark Matter search uses low-temperature Ge detectors with heat
and ionisation read- out to identify nuclear recoils induced by elastic
collisions with WIMPs from the galactic halo. Results from the operation of 70
g and 320 g Ge detectors in the low-background environment of the Modane
Underground Laboratory (LSM) are presented.Comment: International Conference on Dark Matter in Astro and Particle Physics
(Dark 2000), Heidelberg, Germany, 10-16 Jul 2000, v3 minor revision
- …
