4,410 research outputs found
Aerothermochemical analysis of non-oscillatory and oscillatory characteristics of liquid bipropellant rocket motors - Wave model, droplet heating, and evaporation program computation Third quarterly report no. 65-1
Aerothermochemical analysis of nonoscillatory and oscillatory characteristics of liquid bipropellant rocket motors - wave model, droplet heating, and evaporation computer progra
Aerothermochemical analysis of non-oscillatory and oscillatory characteristics of liquid bipropellant rocket motors - droplet evaporation, wave equations, motor instrumentation, non-oscillatory program computation
Model to determine vaporization rate of liquid fuel drople
Steady state aerothermochemistry for liquid bipropellant rocket motors
Model and theoretical equations describing liquid propellant droplet ballistics and combustion gas behavior in bipropellant rocket motors - aerothermochemistr
Line-of-Sight Reddening Predictions: Zero Points, Accuracies, the Interstellar Medium, and the Stellar Populations of Elliptical Galaxies
Revised (B-V)_0-Mg_2 data for 402 elliptical galaxies are given to test
reddening predictions which can also tell us both what the intrinsic errors are
in this relationship among gE galaxy stellar populations, as well as details of
nearby structure in the interstellar medium (ISM) of our Galaxy and of the
intrinsic errors in reddening predictions. Using least-squares fits, the
explicit 1-sigma errors in the Burstein-Heiles (BH) and the Schlegel et al.
(IR) predicted reddenings are calculated, as well as the 1-sigma observational
error in the (B-V)_0-Mg_2 for gE galaxies. It is found that, in directions with
E(B-V)<0.100 mag (where most of these galaxies lie), 1-sigma errors in the IR
reddening predictions are 0.006 to 0.009 in E(B-V) mag, those for BH reddening
prediction are 0.011 mag, and the 1-sigma agreement between the two reddening
predictions is 0.007 mag. IR predictions have an accuracy of 0.010-0.011 mag in
directions with E(B-V)>= 0.100 mag, significantly better than those of the BH
predictions (0.024-0.025). Gas-to-dust variations that vary by a factor of 3,
both high and low, exist along many lines-of-sight in our Galaxy. The approx
0.02 higher reddening zero point in E(B-V) previously determined by Schlegel et
al. is confirmed, primarily at the Galactic poles. Despite this, both methods
also predict many directions with E(B-V)<0.015 mag. Independent evidence of
reddening at the North Galactic pole is reviewed, with the conclusion that
there still exists directions at the NGP that have E(B-V)<<0.01. Two lines of
evidence suggest that IR reddenings are overpredicted in directions with high
gas-to-dust ratios. As high gas-to-dust directions in the ISM also include the
Galactic poles, this overprediction is the likely cause of the E(B-V) = 0.02
mag larger IR reddening zero point.Comment: 5 figure
Detection system ensures positive alarm activation in digital message loss
Lost Word Detection System /LOWDS/ provides special identification for each error detection message transmitted from receiver to transmitter. The message is identified as an original message or an n-times retransmitted message so the receiver can detect where a retransmission request was not fulfilled and activate an alarm
An optical spectroscopic survey of the 3CR sample of radio galaxies with z<0.3. III. Completing the sample
We present optical nuclear spectra for nine 3CR radio sources obtained with
the Telescopio Nazionale Galileo, that complete our spectroscopic observations
of the sample up to redshifts 0.3. We measure emission line luminosities
and ratios, and derive a spectroscopic classification for these sources.Comment: Accepted for publication in A&A. We provide as additional material
two tables presenting the main data for the whole sample, combining the
results presented here with those of Paper I and Paper I
A Statistical Treatment of the Gamma-Ray Burst "No Host Galaxy" Problem: II. Energies of Standard Candle Bursts
With the discovery that the afterglows after some bursts are coincident with
faint galaxies, the search for host galaxies is no longer a test of whether
bursts are cosmological, but rather a test of particular cosmological models.
The methodology we developed to investigate the original "no host galaxy"
problem is equally valid for testing different cosmological models, and is
applicable to the galaxies coincident with optical transients. We apply this
methodology to a family of models where we vary the total energy of standard
candle bursts. We find that total isotropic energies of E<2e52~erg are ruled
out while log(E)~53 erg is favored.Comment: To appear in Ap.J., 514, 15 pages + 7 figures, AASTeX 4.0. Revisions
are: additional author, updated data, and minor textual change
M Dwarfs from Hubble Space Telescope Star Counts. IV
We study a sample of about 1400 disk M dwarfs that are found in 148 fields
observed with the Wide Field Camera 2 (WFC2) on the Hubble Space Telescope and
162 fields observed with pre-repair Planetary Camera 1 (PC1), of which 95 of
the WFC2 fields are newly analyzed. The method of maximum likelihood is applied
to derive the luminosity function and the Galactic disk parameters. At first,
we use a local color-magnitude relation and a locally determined
mass-luminosity relation in our analysis. The results are consistent with those
of previous work but with considerably reduced statistical errors. These small
statistical errors motivate us to investigate the systematic uncertainties.
Considering the metallicity gradient above the Galactic plane, we introduce a
modified color-magnitude relation that is a function of Galactic height. The
resultant M dwarf luminosity function has a shape similar to that derived using
the local color-magnitude relation but with a higher peak value. The peak
occurs at and the luminosity function drops sharply toward . We then apply a height-dependent mass-luminosity function
interpolated from theoretical models with different metallicities to calculate
the mass function. Unlike the mass function obtained using local relations,
which has a power-law index , the one derived from the
height-dependent relations tends to be flat (). The resultant
local surface density of disk M dwarfs (12.2 +/- 1.6 M_sun pc^{-2}) is somewhat
smaller than the one obtained using local relations (14.3 +/- 1.3 M_sun
pc^{-2}). Our measurement favors a short disk scale length, H = 2.75 +/- 0.16
(statistical) +/- 0.25 (systematic) kpc.Comment: 20 pages, 10 ps figures, accepted for publication in Ap
- …
