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| I. DROPLET VAPbRIZATION: HEAT TRANSFER
LIMITED MODEL

A model is presented for the determination of the Qaporization'rate-

of a liquid fuel droplet. The governing equation is the. heat conduction

" equation with the appropriate bdundary and initial conditions, which include

ah energy balance at the surface of the droplet. An approximate solution
to this problem is found utilizing a heat bal.ance integral and an assumed
temperature distribution. Transient and steady-state solutions are thereby
obtained and applied to a particular combustion problem. The solution is _
cpmpa?ed to a diffusion limited analysis and is found to be in agreement.

Finally, the rﬁethod is used to determine the additional mass release
which is due to t};e passage of a longitudinal wave over the evaporatit;n
droplét.

This work was done by Be'rnard Grossman as partial fulfillment of

, _ , ) ,

the requirements for the Mastér's Degree in Astronau_tics._'- . - %/0\

This section is included as a self-contained unit.
Y o
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A. INTRODUCTION

The problem of combustion and combustion instability in liquid

propellant rocket motors has put much emphasis on the determination of

heterogeneous, multi-phase burning rmechanisms. Propellant vaporization’
is an important phenomenon occurring during the combustion process. Thus,
considerable research has been devoted to solving problems concerned with

the evaporation of fuel droplets.

This analysis is used to predict the efféc‘_t of heat transfer on the
vaporization rate of a fuel droplet. The model- presented is not copstrained
to have a diffusion limited evapora_tion-rate and has the versatility of treating
time dependent heat inputs.

The problem is formulate& in two parts: the initial.heat-up, and the
evaporation analyses. The initial heat-up solutio,n is provided only to generate
the functional form. of the as sumed temperature profile to be used in the

. vaporization analysis. ‘The evaporation solutién is developed by using an
integral technique on the basic heat conduction equaAtion as devel;)ped by
Goodman4_ and adapted by Pari'sse5 to a spherical body;

The vaporization solution iél then applied to a particular rocket motor
and the vaporization fate history v)ith_ chamber location is determined.. Finally
a technique is developed which considérs the effect of a continuous, longitudinal

wave on the mass evaporation rate of a liquid fuel droplet in a rocket motor.

r




B. ANALYSIS

" The transient vaporization of a spherical liquid fuel droplet is
considered. The mod_el of a burning droplet consists of: (a) a spherical
~ liquid fuel droélet} (b) a thin film comprised of fuel vapor and combustion
gases; and (c) a spherical flame shroud. A schematic diagram is shown'
in Figure (1). The liquid fuel droplet is assumed to have constant thermal
propertieé, and to remain spherical throughout the entire evaporation
process, In the vapo;- film region the diffusing vapors are heated to the
flame temperature. When the vaporized fuel reaches the flame boundary,
it is assumed that it mixes with the ox.idizer and reacts.

The problem of the initial heat-up of the droplet is now developed.
Initially, the liquid dro;.>1et is at the injection teﬁperature Ti' For this
temperature, and the fuel under consideration, the éaturation 'p.res‘sure: :
is small. Under these conditions the amount of mass evaporated from the
droplet is also small and the'refore negleétea. In view of this assumption
a heat-up condition without mass evaporation results. Thus the droplet
can be considered a heat sink. The heat conduction equation, given belo;w,

'describes the transfer of thermal energy within the droplet:
- .

o7 _ & 21 L. =z of
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‘with the inital condition S

T(CON?T o 2




and the boundary conditions

TS e = b BT
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where & 1is the thermal diffusivity, K is the-thermal conductivity,-a
is the initial radius of the droplet and‘ h {s the film coefficient.
A solution to this linear, transient heat conduction problem is
found in Carslaw and Jaeger6. The solution which is given in series
form does not converge for short periods of time. Hence another solution to :
this préblem, which is more adaptable to short periods of time, was sought.
Carslaw and Jaegar7 outline a general method of applying Laplace transforms to
transient heat conduction problems in order to obtain solutions which are |
suit'able for short times. Parisse5 applies this method to a problem in
transient heat conduction witil spherical symmetry.- Utilizing this method,
the heat conduction equation is transformed to a more convenient form by the
substitution u =t (Tf - T). : |
Applying Laplace transforms to the resulting systém, the subsidiary

\,

equation becomes

l

dzo s = _,T
gAY

(5)

g
!

- — - A



ot T=aQ, (6)
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where ¢ = p/u and U is the Laplace transform of u.

The solution to this system of equationsin series form is

: | . o la - as N\ QRawa| - énﬂw}
v (’ri_'r_>‘. - AR oo e‘ﬁ@ _ﬂ_le‘i '
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For small values of time, the series in equation (8) can be truncated after
the n = O term, since the inclusion of additional terms in the series produces
terms of a smaller order of magnitude. The inverse transformation of the

resulting equation yields the desired initial heat-up solution

Y \ (Q o _ (axe),
T;-T; = (—ﬁ— Q_rg—cl\——-;_ 'G.F%Q l“{&l“
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" As the temperature of the droplet i’ncz;é‘a.se's,;:the;ma,ssf:-,-:. e
evaporation becomes substantial and must be explicitly in cluded in the
boundary conditions of the vaporization solution.

Referring to Figure (2), the .t.ota.l heat transfer q » from the
surroimding gases goes to heating the liqﬁid droplet 9 vaporizing the

surface liquid q, and heating the ensuing gases to the flame temperature,

ap - | . - S _
Oh;: qﬁ M Ckv - CL\" ao)

Choosing a convective model for the energy transport from the flame to

droplet, equation (10) becomes
e | DY Wy LW T
T ), R

where A\ is the heat of vaporization, w is the mass evaporation rate,
A is the surface area of the droplet, and r.s(t) is the coordinate which
locates the position of the outer surface at any time t. The conservation
of mass equation in differential form is
2O NP =\Y; |
Ww=-—smre== - A= (12)
S Q& NS dt

where px is the density of the liquid. Employing this result equation

o —————————— e ——— e e e



(11) becomes |

g

= W(TET) fy-g{.?\-\' C.p(T;"Tv\ %‘% - 3)

For the vapo.rization process, the heat conduction equation applie's

for the interval 0 <r < rs(t). One boundary condition at the surface of the

droplet is

T (r

W =T, | 19

Althoughthe vaporization temperature Tv’ will vary with time, its appearance
in the following analysis will be as the difference Tf - Tv which within the
approximations made in this 'analysis, remains constant, Now the time

variable is defined to be zero when r = a., Hence from a consideration of

the continuity of heat input for the heat-up and vaporization analysis"

dr

5. =0 at t=0 _ : . (15)
dt :

The initial condition determined by the heat-up analysis is

T (r,0) = T, (r) ‘ o o (16)

The system of equations (1), (13),« (14), (15), (16) is non-linear due

to the presence of rs(t). Paﬂsse6 outlined a method of. aéplyi.ng Goodman's




7.-at balance integral to the ablation of a solid sphere. As a result of the
assumptions made in this analysis, the method of solution of the problem
is similar,
Equation (1) is converted to a more convenient form by the
transformation u = rT, whereupon
oV _ D
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Integrating equation (16) over the volume of the li;;uid
: v - S .
Ca(r 3G _ (9! —(-—\ \
=S oudrfu(%;t\a& = X \o¢ g \OT /gl

or
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On the basis of the functional form of the initial heat-up solution,

the radial time dependant temperature profile is assumed to be of the form

—'\‘"—r(‘ - oy -((-s‘r\ : _
e S T o

" where 6{t) is arbitrary. The function 5(t) ‘can be evaluated from equation

.(19) - S
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Equation (20) becomes
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This temperature profile satisfies conditions (14) and (15), and gquationr(16)
approximately. A plot of this andthe exact profile obtained from the heat-
up solition, evaluated at a given time is shown in Figure (3).

Substituting equation (22) into equation (19) the following second

order, ordinary differential equation in non~-dimensional form is obtained.

i

where

i
P
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A steady state vaporization rate is obtained by setting n = 0,

’ wh:.ch results in .

RS

,\_((Ss = l'“'fé”t

(24)

- (25)

- (26)

(27)




" C.-RESULTS

The results of this analysis is applied to the determination of the
véporization rate of a liquid fuel droplet moving through a rocket motor.
The chamber is divided into a number .of sections where the thermoaynamic
properties are specified and assurﬁed constants for the interval. Thus, once
the variation of film éoefficient, flame temperature and mean droplet velocity
with chamber location are known, the burning rate and droplet history can
be determined using thé preceding analysis. The‘steady-state solution,
equations (26) and (27), -is used as an approximation, or the more exact
equation (23) can be integrated numeﬁcally. The foilowing schéme can be

() = ud st + e o,

’{((’m = &l(’t,)-x— “.Q(’CLAA'Q | (29).

The values of 7 (Ti) and v'q("f‘i) can be substituted into equation (23) to
obtain %’ (Ti). Initially, -q(O)v = 1and %(0) = 0.:

The steady-state and transient vaporization rate solutions are
applied st_ep-wise to a particular rocket motor for the purpose of comparison.
The steady-state vaporization rate is found to be in agreem-ent with the
transient evaporation rate and for the particular fuel considered, the vanatxon
is within 2%. The droplet vaporizatmn rate is shown as a function of chamber.

location in Figure_(4). For the remainder of this discussion, the steady-state




-

solution to equation (23) is used.

The vaporization rate of a fuel droplet in a rocket motor determined
in this paper is compared to the vaporization rate calculated from the method
given Ai,n Burstein et al.' The ballistics of 50/50 Aerozine-Nitrogen Tetroxide
propellants are determined. The thermodynamic properties calculated in
Burstein's analysis is used here and a plot of some of these is shown in
Figures (5) and (6). For the propellant combination considered, a modification
of the energy balance, equation (13), is made. Since the dissociation of S
hydrazine is exothermic, a heat of reaction 9. must be included in the

heat source term. Thus equation (13) becomes

' ._._ @I \_ ‘ v A-i- C.).‘E '
\’\(T;-\;\f- " ac\‘_s‘t—— ] ?\-t.C@( T Q- 3% 60
The mean value of the vaporization temperature, Tv is found by integrating '

over the energy distribution in the liquid -

_ A e |
—T;-,\ =G S:rdf' | - (31)
where Tcl is a mean droplet temperature and T is given in equation (22).
Thus equation (31).is integrated to yield Tv.' |
Now with these modifications, the two _me"chods are used to calcuiate
the variation of the vaporization rate and droplet radius with chamber location.
The results of the two analyses are given in Figures (7) and (8). The technique

given‘ in this paper is within 20% of that used in Reference 1.

N
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Conibustiqn instability is a measur;a of tixg energy accumulated in a-
cavity and is dependent upon the interaction of waves with energy sources.
As a wave passes over an evaporating fuel droplet, addi'ﬁonal‘energy can be
released which can couple to the wave and ‘drive it. For the purpése_ of‘this

. analysis a step ’fu.nction heat input which decays exponentially with time is
considered to represent tixe energy transport to the droplet. Hence
: _ — | 52
Qe =G < '-+h(T+—‘\1/\ | >
where § is the additional heat input ana t* is the time constant of the
exponential,

Substituting equation (32) into equations (29) aﬁd (19) and performing.

the required mathemafiéal manipuiations yields the following second-order

differential equation for the evaporation rate due to a time dependent heat input

. " o 1‘ o N
/Q.: LY -2 K CN_) f%ﬁ*'@%*@e— e
L'V: %Q:@’t+“6-\-’:/t | (34)

:6':__ B _ | (35)
AL h-omW

.(5: S
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Equation (33) possesses similar characteristics as equation (23) and may Se
solved using the same numerical integration, equations (28) and (29).

This solution is now applied stop.-wise to the rocket motor which has
been previously described. The unsteady. heat input is applied af each chamber
section and hence the effect of chamber location on the additional burning rate
is-; fosnd. Mass conservation, equation (12) is used to yield the additional mass

evaporation due to the unsteady heat input. For a q of .20% and time constants

-

t¥ = 1,0.1, and 0.01 milliseconds, the additional mass evaporation with

chamber section is calculated and plotted in Figure (9).
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3 i ' D. CONCLUSION

A heat transfer analysis for the determination of the vaporization

rate of a liquid fuel droplet has been preSenfed. Steady-state and transient

vaporization rate solutions were obtained. The vaporization rate given herein

1 . : A .
was compared to that calculated using Burstein's analysis, with a diffusion

limited model. Both solutions werle found to be in agreement and the
vaporizaﬁon rates differed by a maximum of 20%.

It has also been shown that an amount of édditional mass can be
released due to the pé.ssage of a wave over an evaporation'droplet and that
favorable positions iﬂ a rocket chamber exi;st which support this mass

. releaée. )

Finally, it may be concluded that a working analysis vwhich can

determine the propellant vaporization rates of a liquid fuel droplet with

steady and unsteady heat inputs has been .pr'es_ented.
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42 CHERRY LANE
HUNTINGTON, NEW YORK

I1I. WAVE EQUATIONS

The conservation equations were derived employing sources and sinks and
including viscous and heat conduction terms. These equations will be employed
in Geriving the wave and compatibility equations to be applied to fhe rocket
motor. Although it is contemplated at this time not to include the viscous
and heat conduction terms, they are considered in case their possible importance
becomes apparent in the future.

The development of the wave equation was not pursued further at this time
since it is felt that other work has priority. This includes debugging the
non-oscillatory aerothermochemical computer program, developing the dfoplet
evaporation program, and generating the functional form bf the wave driving
source term. These "wave" equations are being given at this time due to the
suggestion of Dr. George Sotter (letter 6 April 1965). I trust that they will
be helpful. Reference should be made to Report No. 64-3, 1 October 1964, for
the gas dynamic equations which are used as the basis for the work given below.

" The mass continuity equation remains unchanged,

__g . -'.‘.-. o— ' .
==tV pg¥ V.o (2.1)

where Pg is the gas density and subscript can be dropped,
t is the time,
T is the gas velocity,
V is the differential operator,

and V. @ is the mass source term and is obtained from



VITO D. AGOSTA | | 26
L] - [ad -—
J (Voo Moy, = |70 by (2.2)
V& \%

where \7) is the liquid droplet volume,

Py is the droplet density,

<

g is tiie gas-system volume,
and w is the liquid droplet surface velocity with respect to its center of
mass. The source term (v - ® ) is a function of space and time and must be
generated from the injector geometry and the results of the non-oscillatory
aerothermochemical program to give (r,5,z) distribution, and the nonsteady
droplet evaporat;on program to give the time (t) variation.

In order to use Newton's Iaw, the body and surface forces acting on the

mass in an elemental volume must be found and these are

— . [ e [ - . ‘ 23
), Force = J. P Fbévg + | pdS (2.3)
\Y S _
g
where
— b d g hend - - 2 —
p, =-mp+ 2u(@-V)u + u(nx §) - uAT, (2.4)
AEV T,
E =Vx U,
f£ are body forcés,
and M is the viscosity.

The surface integrals are changed to volume integrals by Gauss's theorem so

that we obtain
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I .(l{_i. n~ gz " - 5 o
JPgat Vg ¥ J\) (0,0vy) G ¥ J{T - 9(7-2)8y,
L

IS -

= J [Pgfooay = T+ 2(7H T W H v x () -

- -§- V() ] v, ’ (2.5)

The body forces oﬁ the liquid droplets are included in the drag term. In
addition, any distortions and subsequent drag in the gas field due to the pres-
ence of the droplets are also included in the drag term. The effect of the
pressure gradient across the droplet is neglected except that of work done by
the expanding vapors against the gas, and this shows up in the eunergy equation
below. Where the droplets are very large, then it can be envisaged fhat the
pressure gradient can shear these droplets - but it is assumed that the drop-
lets are not that large.

Since the volume Vg is arbitrary, we can drop the integral éigns and
expand the viscous terms. If the variable viscosity and body force terms are
' neglected, then the equation (2.5) reduces to
oG8+ Py * (W9 - ) = - % -

_“(vx§)+-§pv§' (2.6)

- - I . _d_‘\z
where Pdrag = J7 (pLGVL) It
. ) :

Vp are "pressure"” forces,
u(V x €) are rotational flow terms,

and u(va) are compressibility terms.
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The energy equation is more involved. It is decided to write the first
A law of thermodynamics for both the dropiet and the gas subsystems and to add

these. For the gas the first law can be written as

dqQ dg° awk

. ~ L]

_& = g . g

Ja NS lw tL @ MV {2.7)

and for the droplet,

dQ dE Gwk ,
n Oy R A Ry ¢
vy =@ Ty TaE Ve (2.8)

where Q is the thermodynamic heat transferred, E® the stagnation internal
energy, and Wk the thermodynamic work. The sum of these equations, 'i.e.,
equations (2.7) and (2.8) apply to the gas-droplet system. ILet us now expand -

these terms and combine them. The internal energy of the gas is expressed as

Jw® Tl ® (ogévge g)
de®
_ ~od :
J Dgévg 5 ® It (Dgévg)
de® '
= [ — 2+ Tl (v (2.9)
Jpgévg P +,jeg( ®) g

where the source term comes from the mass continuity equation. A similar expan-

sion occurs for the droplet internal energy term,

o 0

dE de
Il AN ral M = CR YY)

" deoL ", 0
= ety e T (e N @Gvg (2.10)
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de®
0%V TaE
represents the energy convected away by the evaporated portion of the droplet

The term f " represents droplet heating, the latter term jkez + k)(V'aaév
system. The symbol-k is the heat of evaporation, and this energy is shown to be
abstracted from the internal energy of the droplet system; however, it is noted
that this energy can be directly related to the heat transfer by equation {2.7)

and its form becomes a matter of bookkeeping. The heat transfer termiggg can

also be divided into that transferred: (1) to the rocket chamber walls, Qw;

(2) to the droplet, Qs (3) to a part of the droplet to evaporate it, (V;a LS
and (4) to the vapors in heating them from the droplet to ambient temperature,
Q,- It was decided to include part (3) in the internal energy term, and part (4)
as a redistribution of energy within the gaseous subsystem. The negative sign
occurs since it is assumed that a process of evaporation only can occur from

the droplet.

Let us define

_ aq aQ
N ~ Ay
Ja Vel Yyt ® v (2.11)

where a then becomes the thermodynamic heat for the droplet-gas system, i.e.,
the heat transfer to the rocket chamber walls and any other environment. If we

combine equations (2.11), (2.10), (2.9), (2.8), and (2.7), we obtain

a de®
.ﬁ -— e —g "0 o-’
T V= Dgévg ot Jeg v ?)évg +

. .o .
+ PV m (g (TR,

. dwk o dik,

S N 4 —
i vt TEw (2.12)
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Now let us consider the work terms. TFor the gaseous subsystems, the work is
divided into four parts, namely, (1) the work required to accelerate the liquid
droplets, (2) the work of the body forces, (3) the work of the pressure forces,
and (4) the work done on the gas by the expanding vapors. Thus,

na‘qk _ ra [l . -—
e Gvg = - ijv pu Fbévg + JSu | [np +
g

- — - 7S
+ % pwon = 2u(n . V) U - u(n x 5)]68} -

[ J—
- JS Vyapors
L

“np GSL+?drag - v ~ (2.18)

where after the equal sign the first term is the work done by virtue of the body
force, the second, the pressure, the third the expanding'vapors, and the fourth
- the drag. 1In the third factor the symbol ;Qapors appears, and it is the velocity
of the envelope of the expanding vapors from the droplet. Its value is not
known and varies from v, the droplet Velocity,'to.a, the gas velocity. It is
assumed that the expansion occurs at thermodynaﬁic equilibrium such that the
work done by these expanding vapors on the gas, as determined by the vapor
thermodynamic properties, is equal to the work received by the gas,as determined
by the gas thérmodynamic properties. Thus, these.works can be equated and this
is done below.

The work dong by the evaporating droplet is that due to drag and the
evaporating vapors. The work done by the droplets on the gas by virtue of the

gas viscosity and subsequent gas fluid field distortion is assumed to be included

in the drag term. Thus,
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"y, = [T npes, -F v (2.14)
T T JS Vvapors ~ " P ¢~ Farag * Vv )
L .
The sum of the work done by the gas-droplet system is then
. dHk  dik . _
——g L —_ - - _o V - + Ve « U +

Rl e i i W CRRY b L O

+ v« (Exu) = Z,HAa -2 u(u - V)A\ 5v (2.15)
2w -2 } oy, ,

where the body and variable viscosity terms are neglected. Again it is noted
that the pressure gradient effects across the droplet are neglected. Now

consider the term

J pA 6yg = J p(v * u)évg

From continuity

(v-E)=-§—[(v .@)_Eg]

at
g
so that
" rp eSS I
JpAavg=Jo[(v-cp)—dt]5vg | (2.16)

g

Before we combine all terms, note that from equation (2.12) the droplet internal

energy term can be expanded thusly,
0
de
n 4L ® d vey _
Jovea T eva (et ) =

(] [ d
= J by, + J pLdyLa% ‘v {2.17)
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It is noted that the first term is related to the static temperature of the
droplet and the second term is equivalent to the product of the drag force
and the droplet velocity. Thus we have obtained from "paper and pencil

" which
operations’ the inclusion of this: drag work/accrues due to its equality to
the change of kinetic energy of the daroplets. This term is included in the form
given in equation (2.17) since it offers the convenience of relating the heat
transfer to the droplet which occurs at its static temperature, and the inclu-
sion of the semi-empirical coefficient of drag from which the drag work and

thus the subsequent droplet dynamics can be determined.

Combining terms we have

— . de
Fgg ] E_ _ n ._ o
| & évg - PV, 3 = ] (v cp)()d-ez)&vg +
de® o ' —
e g o 0 “ r v ‘&—
+ J pgévg EED + eg (v qgévg + J pzévz Vo

" _. dp _
- | —(a-v)p_-g-[(v-cp)—a;cﬂ]wva(u-u)a,
g

+uv.(ExE)_-§uA2--§-uu‘V)A+ 6Vg (2.18)

Now let us combine and define terms. Let 6 be the heat transferred to the
chamber walls and conducted to the adjacent gaseous elements; then

”__6_ " del, e ‘
o évg =) PV = [q + (venv)T] évg (2.19a)

J [e‘; + é] DL

HH

J" (v.?p)hz 6vg'- ' | | (2.19b)

)
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[ogpvyv-S=7 Firag " NV (2.19¢)
Jﬂ (ez + k)(v-'c'p)évg = j‘ esapor(v@) bvg (2.194)

where # is the thermal conduction coefficient. Thus, since 6Vg is arbitrary and

dropping the subscript g for gas, we havé.

(0]
= - (v0) &° de_

g+ (v 4V)T = - (V) vapor tPha Y
+ (VPR +F V-2 v @) -

e @ W - (ExT) 3 e

+% u@wva ' | | (2.20)

An alternate form of equation (2.20) and possibly more convenient is obtained

by using the gas dynamic operator for source flow,

EdE - - @ (v-3) + (V%) (2.21)

winere @ is any property. Thus we obtain
’ — 0
VAT = - . +
q + (Vouv)T (v-9) € apor

d - -
+ 3 (peo) + (V-upho) + Pdrag *v -

- @) - W x ) +5 po?
+% u(u-v)a | - (2.22)

The wave dynamic equations are then equations (2.1), (2.6), and {2.22).
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ITI. MOTOR INSTRUMENTATION

I should like to restrict myself at this time to instrumentation for non-
osciliatory pressure data. This is described in detail below.

It is initially assumed that the gas dynamics occurring in a rocket motor
chamber can be represented adequately by a one-dimensional approach. The
theoretical results are then used to set up the undisturbed reacting fluid
field in which the wave will propagate. The wave source term, (V-m ), is
multidimensional and is generated by the information obtained from the spray
distribution of the injector, the one-dimensional droplet ballisticé obtained
from the results of the above-mentioned one-dimensional aerothermochemical
program, and from the results of the nonsteady droplet evaporétion analysis.
Thus, from the one-dimensional aerothermochemical analysis, the initial coef-
ficients of the independent variables of the wave equation are obtained. In
addition, since the gases are moving out of the chamber through the nézzle,
then a convective dissipation exists for the waves as they are swept out of
the chamber or broadened by the longitudinal velocity gradients. These terms
appear in the time dependent aerothermochemical program.

Some of the initial conditions to the droplet ballistics program of the
aerothermochemical program are the spray characteristics, namely, the mean

droplet size, and the standard normal deviation. Although this information is

obtained principally from Priem's report TR-67, and from some of our experimental

results, the difference in injector design and operating conditions preclude

predicting the spray characteristics with certainty. Thus, from an experimental

verification of the one-dimensional aerothermochemical analysis, a "quantitative"

insight is obtained of the spray characteristics for that particular injector,

/90



35

, AQ\\CVbnu Q\, \Q\\b
%Q\\Q%\%\b%.\ /Q R\Q\\\.dvm\ \\O\ bx\\n.m,%,\

q




VITO D. AGOSTA : 36

and the description of the fluid field in which the wave propagates would be
more realistic.

The.instrumentation for the non-osciilatory ' program is relatively simple.
I would suggest that for the first half of the motor from the injector end,
pressure ports be placed about one inch apart. Near and in the injector and up
to two inches downstream, the pressure ports be closer spaced. A picture is
worth a thousand wordsti! A "écanivalve" arrangement can possibly be used;
thus only one pressure transducer is necessary (in our case a Kistler #601).
I do not know at this time whether a sufficiently fast scan motor is available.
It would be preferable to obtain three consecutive non-oscillatory pressure
readings prior to initiating any oscillations. From this data a longitudinal
pressure gradient is.obtained for the motor. The same can be calculated from
the non-oscillatory theoretical program. Thus, the data (both éxperimental

and theoretical) can be evaluated.
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IV. NON-OSCILIATORY PROGRAM COMPUTATION

The next three sections deal with the computer program for the steady state
aerothermodynamic analysis of the combustion chamber. We first present some
details of the droplet and gas dynamic equations. In the following sections the
input and output format of data is given in some detail. The program is operating
giving reasonable results. It is intended to give you the present version along
with the knowledge that even at the writing of this report some constants con-
tained in the prograﬁ will be changed in future versions. TFinal correction
cards will be forthcoming when the program is to the satisfaction of the authors.
(Note: A copy of the computer program will be given along with the FORTRAN
deck).

In this section we briefly describe the basic equations of the droplet
system and the gas dynamic system.' First, it must be said that there are
several options in the running of the steady state code. Normal operation is
with all sense switches up. If sense switch 3 is down, extensive debugging
printout will appear on tape 6. It is produced in both fuel and oiidizer
evaporation routines as well as the gas dynamic routine. Its pfimary use was
in the de&elopment of the program, and as such the meéning of the printed data
will not be dwelt upon. If sense switch 4 is depressed, droplet breakup éan be
investigated as the Weber number criterion is used to determine if droplet
breakup occurs. No time lag for breakup has been incoréorated in this model,
although it may be included. |

The basic equations to be integrated in the fuel drop and oxidizer drop

subroutines will not be described. They are basically the energy equation,

/3
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momentum equation and continuity equation:

he main job of these

of the numerical work

ar.,

-Cﬂ?—-:aqﬂ/plcpAr

dv . 3 )z &

ac = 8 Spluv) o,

.- w,x Poo1 0 9Ty 9%
dt A 3 dt > dt dt de

2

and transport properties.

Nomenclature for these equations and the units are

droplet temperature (°r)
droplet density p, = p,(T,) (1bm/£t%)
droplet specific heat nggg—)

1bm R

droplet surface area A = mr® (ft®)
droplet radius {(ft)

droplet velocity (ft/sec)

: - combustion gas velocity (ft/sec)

combustion gas density (1bm/ft®)

drag coefficient C,= 27/Re'84 5 Ry

Re= 2°rlu—v[p/v

is the Reynolds number

heat transfer to liquid droplet (BTU/sec)

evaporation rate (lbm/sec)

viscosity (1bm/ft-sec)

38

+two routines is to integrate these equations, although most

is devoted to evaluating properties of the thermodymamic
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The computation of the last two quantities require extensive knowledge of

transport properties. For example, to compute W we have

W=kAQL ; Q=p In—2—
g ’ P PPy
where kg is the coefficient of mass transfer (1bm/sec~ft3-atm),
A is the drop area (ft®),
@ is a correction factor to account for unidirectional diffusion (rather
than just considering equimolar diffusion),

psp, is the system pressure and vapor pressure (at T,)(atm).

K is somewhat complicated to compute but may be obtained from the
o -

empirical relation,
3.3
NU(kg) = 2 + 0.65.” Re
Here Nu is defined as 2kgr/Dv(M/RT),
D, is the diffusion coefficient (£t3/sec),
R = .729 (atm £t°/mole’R),
T : average film temperature (R) = (T£+T)/2
T is the local flame temperature for the fuel drop (OR) and for the
oxidizer drop'T is the equilibrium temperature (OR) for the com-
bustion gas,
S, = U/Dvp is the Schmidt number.

Dv is given by

@ b)l/3(T y5/12

MM 3
(i:g;«)

chca

oo
=~ o

v

(>
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: 1 _
If P the system pressure is in atm and T, = T/(Tcach)‘ with T the average
film temperature in °K, then D, has the units of cm®/sec. It is understood that

T . stand for the critical pressures (in atm) and critical tempera- -

Pea’Pep? Tea’Teb
ture (in OK) of the droplet and average critical pressure of the main constituents
of the combustion gas environment, respectively. This is converted to £t3/sec
in the program.

The constants a and b have the following Qalues:

Nonpolar gas pairs

a = 2.745 x 107

b = 1.823
H20 and nonpolarrgas _
as= 3.640‘x 1074

b = 2.334

In the program it is to be observed that some early values were used. For most

propellant combinations considered, however, H20 is present in the combustion

products. The continuity equation may now be integraféd‘once defdt is known.
This computation will now be explaineds
q, is defined by.
9y =497~ W X(T£>

for group of drops initially of equal size (pth group).

Here ch
_ _ - 2 - vapor
U = BA(T-T)Z » 2=——» 25
e -1 2
Note: ¢ ' inéludes the heats of formation so that the

vapor ‘ :
energy of dissociation is included.
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h is the heat transfer coefficient and is obtained from the Nusselt

correlation:

1 L
(Nu)h = %—‘E =2 + 0.6 Pr/3 Re?
m .

km is the mean film conductivity G"jﬂi;__—q
sec-ft2-%R

Py is the Prandtl number (Cp“/km) = 0.67.

Because of the different types of fuels that are being used, some subroutines
will be changed. The present program is operating and it is intended that you
" use to get acquainted with its many aspects if you desire. AContinuing, we see
that h may now be computed so that G WY be evaluated. q is then calculated
and dTZ/dt is obtained from the energy balance. A

The momentum equation is integrated, using the drag coefficient correlation
given in the definition of terms of the basic droplet conservation equations;

The time dependent continuity equation, for the gas system, is

the momentum equation is

v OpuA | dpuPA _ 3P _ . _ , 9p
at+ax = v f Aax

If time derivative terms are deleted and the above continuity equation is

multiplied by u and subtracted from the momentum -equation, the result is

p /2 w3 £
g ox * Ag ox a3 @ puA

19
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p is the gas pressure (1bf/ft?)
p is the gas density (1bm/ft®)
u is the gas velocity (ft/sec)
v is the liquid velocity (ft/sec)
is the gas flow rate (1bm/sec)

is the friction force (1bf/ft)

> g

is the chamber area (ft®)
x is the distance (ft)

g is the gravitational constant (32.17 ft-1bm/lbf-sec®).

Using forward finite difference approximations, the following difference equation

is obtained:

ekt = p) - o (o) = 1 (x2) # TE - (cent)-o0))-
-£ Ax
A

The frictional force is the total force which acts in accelerating the

drops and is given by

= Ty dv
£
LNPfP L(g dt)P P
m,).. is the drop mass (lbm) of the pth grou
277 p
(dt)P is the acceleration of that drop (ft/sec )

NP is the number of drops in the p group flowing per sec.

Here =9°D /(4/3”roa 0)

5
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r is the initial drop radius (ft)
P, is the initial drop density (1bm/£t%)

p is the distribution weight of the pth class of drops

@, is the total mass of injected propellant per sec.

This computation is carried out in the droplet subroutines, the result, f, being
available for computation in the gas dynamic subroutine. The average value of f
is computed in the droplet subroutines for the basic interval Ax(1bf/ft}.

The time dependent energy equation is written as
) 5] 1 .-', [s) Uz
Q=5 (pafe + 2u?)] e [pAu(g +- p/P +-—2—)]

- e° 2, fv
v ox

We delete the time dependent terms and use the steady state continuity expression

¢=puAA to obtain

‘ 2
(q+e$%; =§;[cp(h+92—)]+fv

letting h=cPT and writing the result in terms of forward finite differences,
lp(e T +-‘ﬁ)] .-[cp(c T+ Ei)] = [(.+e° 535’) - fv] ix
p 2 4 x+hx P 2% 7y &

or

1

T(x-i-Ax) = W

O x u® u® |
Xihx (CPT+ —2—) - (X+AX) +
1

o0 do _
* @ix+Ax; [q * €y dx fv]Ax§
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Here, q is “he negative of the time rate of change of internal energy of the

. - _é_ z. ETE ‘= - . .
drops = - m (cvéré)\seé ' 9p5
es is the stagnation internal energy of the liquid droplets plus the

latent heat of vaporization, (ez + A)
A is the latent heat;
© is the total mass of gas flowing at a station in the chamber (1bm/sec);
T is the gas temperature (°R);
u is the gas veiocity (ft/sec);
f is the frictional force (1bf/ft) per unit distance;

v is the droplet velocity (ft/sec);

c_ is the gas specific heat ( D‘O )}; as thermodynamic data becomes better

P 1bm~°R \
defined, then the appropriate specific heats are used. Where this is
not possible, then the form of the energy equation will be changed so
that tﬁe'form of the thermodynamic data can be utilized.

The energy and momentum equations are solved for an approximate vélue of

spatially advanced temperature and pressure. Thege variables are given the

temporary names w and T, and are weighted with first approximations to the

advanced pressure and temperature

T(zj(X‘*'AX) (1)(1)-9 + (l_e) T('l)(x-i-Ax) »

p(a)(x+Ax)- ﬂ(l).e + (1-8) p(l)(x+Ax)

The superscripts refer to the approximation (2) second, (1) first, etc. § is a
weight factor or sometimes called a convergence parameter.

t ]w<n).- T(n)] <e (e ~ loR) s

we say we have convergence of the nth iterate of the set of gas dynamic equations.

>
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The gas velocity is computed from

u(xtax) = (plxrax)/Axkax)) Ry L) /n-(n-l)

R is the gas constant (£t-1bf/1bm-"R).

The gas dynamic equations that are presented here are modified versions
of the equations which have been programmed for the steady state model. It has
become apparent that we will need several formulatious of computation so that
we will have a certain amount of flexibility of computation when the nonsteady
calculation is performed. It is intended that the further improvements that

. will be made will become available to you as they occur.



