4,765 research outputs found
Capabilities and applications of the Program to Optimize Simulated Trajectories (POST). Program summary document
The capabilities and applications of the three-degree-of-freedom (3DOF) version and the six-degree-of-freedom (6DOF) version of the Program to Optimize Simulated Trajectories (POST) are summarized. The document supplements the detailed program manuals by providing additional information that motivates and clarifies basic capabilities, input procedures, applications and computer requirements of these programs. The information will enable prospective users to evaluate the programs, and to determine if they are applicable to their problems. Enough information is given to enable managerial personnel to evaluate the capabilities of the programs and describes the POST structure, formulation, input and output procedures, sample cases, and computer requirements. The report also provides answers to basic questions concerning planet and vehicle modeling, simulation accuracy, optimization capabilities, and general input rules. Several sample cases are presented
Non-local transport in normal-metal/superconductor hybrid structures: the role of interference and interaction
We have measured local and non-local conductance of mesoscopic
normal-metal/superconductor hybrid structures fabricated by e-beam lithography
and shadow evaporation. The sample geometry consists of a superconducting
aluminum bar with two normal-metal wires forming tunnel contacts to the
aluminum at distances of the order of the superconducting coherence length. We
observe subgap anomalies in both local and non-local conductance that quickly
decay with magnetic field and temperature. For the non-local conductance both
positive and negative signs are found as a function of bias conditions,
indicating at a competition of crossed Andreev reflection and elastic
cotunneling. Our data suggest that the signals are caused by a phase-coherent
enhancement of transport rather than dynamical Coulomb blockade
Program to Optimize Simulated Trajectories (POST). Volume 1: Formulation manual
A general purpose FORTRAN program for simulating and optimizing point mass trajectories (POST) of aerospace vehicles is described. The equations and the numerical techniques used in the program are documented. Topics discussed include: coordinate systems, planet model, trajectory simulation, auxiliary calculations, and targeting and optimization
Measuring Polynomial Invariants of Multi-Party Quantum States
We present networks for directly estimating the polynomial invariants of
multi-party quantum states under local transformations. The structure of these
networks is closely related to the structure of the invariants themselves and
this lends a physical interpretation to these otherwise abstract mathematical
quantities. Specifically, our networks estimate the invariants under local
unitary (LU) transformations and under stochastic local operations and
classical communication (SLOCC). Our networks can estimate the LU invariants
for multi-party states, where each party can have a Hilbert space of arbitrary
dimension and the SLOCC invariants for multi-qubit states. We analyze the
statistical efficiency of our networks compared to methods based on estimating
the state coefficients and calculating the invariants.Comment: 8 pages, 4 figures, RevTex4, v2 references update
Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid
NOTICE: this is the author’s version of a work that was accepted for publication in Acta Biomaterialia. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Acta Biomaterialia, [VOL 6, ISSUE 8, (2010)] DOI: 10.1016/j.actbio.2010.01.04
Plasmon Evolution and Charge-Density Wave Suppression in Potassium Intercalated Tantalum Diselenide
We have investigated the influence of potassium intercalation on the
formation of the charge-density wave (CDW) instability in 2H-tantalum
diselenide by means of Electron Energy-Loss Spectroscopy and density functional
theory. Our observations are consistent with a filling of the conduction band
as indicated by a substantial decrease of the plasma frequency in experiment
and theory. In addition, elastic scattering clearly points to a destruction of
the CDW upon intercalation as can be seen by a vanishing of the corresponding
superstructures. This is accompanied by a new superstructure, which can be
attributed to the intercalated potassium. Based on the behavior of the c-axis
upon intercalation we argue in favor of interlayer-sites for the alkali-metal
and that the lattice remains in the 2H-modification
Matrix-free calcium in isolated chromaffin vesicles
Isolated secretory vesicles from bovine adrenal medulla contain 80 nmol of Ca2+ and 25 nmol
of Mg2+ per milligram of protein. As determined with a Ca2+-selective electrode, a further accumulation
of about 160 nmol of Ca2+/mg of protein can be attained upon addition of the Ca2+ ionophore A23187.
During this process protons are released from the vesicles, in exchange for Ca2+ ions, as indicated by the
decrease of the pH in the incubation medium or the release of 9-aminoacridine previously taken up by the
vesicles. Intravesicular Mg2+ is not released from the vesicles by A23 187, as determined by atomic emission
spectroscopy. In the presence of N H Q , which causes the collapse of the secretory vesicle transmembrane
proton gradient (ApH), Ca2+ uptake decreases. Under these conditions A23 187-mediated influx of Ca2+
and efflux of H+ cease at Ca2+ concentrations of about 4 pM. Below this concentration Ca2+ is even released
from the vesicles. At the Ca2+ concentration at which no net flux of ions occurs the intravesicular matrix
free Ca2+ equals the extravesicular free Ca2+. In the absence of NH4C1 we determined an intravesicular
pH of 6.2. Under these conditions the Ca2+ influx ceases around 0.15 pM. From this value and the known
pH across the vesicular membrane an intravesicular matrix free Ca2+ concentration of about 24 pM was
calculated. This is within the same order of magnitude as the concentration of free Ca2+ in the vesicles
determined in the presence of NH4C1. Calculation of the total Ca2+ present in the secretory vesicles gives
an apparent intravesicular Ca2+ concentration of 40 mM, which is a factor of lo4 higher than the free
intravesicular concentration of Ca2+. It can be concluded, therefore, that the concentration gradient of free
Ca2+ across the secretory vesicle membrane in the intact chromaffin cells is probably small, which implies
that less energy is required to accumulate and maintain Ca2+ within the vesicles than was previously
anticipated
Congruence modularity implies cyclic terms for finite algebras
An n-ary operation f : A(n) -> A is called cyclic if it is idempotent and f(a(1), a(2), a(3), ... , a(n)) = f(a(2), a(3), ... , a(n), a(1)) for every a(1), ... , a(n) is an element of A. We prove that every finite algebra A in a congruence modular variety has a p-ary cyclic term operation for any prime p greater than vertical bar A vertical bar
Penning ionization of doped helium nanodroplets following EUV excitation
Helium nanodroplets are widely used as a cold, weakly interacting matrix for
spectroscopy of embedded species. In this work we excite or ionize doped He
droplets using synchrotron radiation and study the effect onto the dopant atoms
depending on their location inside the droplets (rare gases) or outside at the
droplet surface (alkali metals). Using photoelectron-photoion coincidence
imaging spectroscopy at variable photon energies (20-25 eV), we compare the
rates of charge-transfer to Penning ionization of the dopants in the two cases.
The surprising finding is that alkali metals, in contrast to the rare gases,
are efficiently Penning ionized upon excitation of the (n=2)-bands of the host
droplets. This indicates rapid migration of the excitation to the droplet
surface, followed by relaxation, and eventually energy transfer to the alkali
dopants
- …
