1,543 research outputs found
Slow Coarsening in a Class of Driven Systems
The coarsening process in a class of driven systems is studied. These systems
have previously been shown to exhibit phase separation and slow coarsening in
one dimension. We consider generalizations of this class of models to higher
dimensions. In particular we study a system of three types of particles that
diffuse under local conserving dynamics in two dimensions. Arguments and
numerical studies are presented indicating that the coarsening process in any
number of dimensions is logarithmically slow in time. A key feature of this
behavior is that the interfaces separating the various growing domains are
smooth (well approximated by a Fermi function). This implies that the
coarsening mechanism in one dimension is readily extendible to higher
dimensions.Comment: submitted to EPJB, 13 page
Molecular Model of the Contractile Ring
We present a model for the actin contractile ring of adherent animal cells.
The model suggests that the actin concentration within the ring and
consequently the power that the ring exerts both increase during contraction.
We demonstrate the crucial role of actin polymerization and depolymerization
throughout cytokinesis, and the dominance of viscous dissipation in the
dynamics. The physical origin of two phases in cytokinesis dynamics ("biphasic
cytokinesis") follows from a limitation on the actin density. The model is
consistent with a wide range of measurements of the midzone of dividing animal
cells.Comment: PACS numbers: 87.16.Ka, 87.16.Ac
http://www.ncbi.nlm.nih.gov/pubmed/16197254
http://www.weizmann.ac.il/complex/tlusty/papers/PhysRevLett2005.pd
Algebraic analysis of quantum search with pure and mixed states
An algebraic analysis of Grover's quantum search algorithm is presented for
the case in which the initial state is an arbitrary pure quantum state of n
qubits. This approach reveals the geometrical structure of the quantum search
process, which turns out to be confined to a four-dimensional subspace of the
Hilbert space. This work unifies and generalizes earlier results on the time
evolution of the amplitudes during the quantum search, the optimal number of
iterations and the success probability. Furthermore, it enables a direct
generalization to the case in which the initial state is a mixed state,
providing an exact formula for the success probability.Comment: 13 page
Theory of Initialization-Free Decoherence-Free Subspaces and Subsystems
We introduce a generalized theory of decoherence-free subspaces and
subsystems (DFSs), which do not require accurate initialization. We derive a
new set of conditions for the existence of DFSs within this generalized
framework. By relaxing the initialization requirement we show that a DFS can
tolerate arbitrarily large preparation errors. This has potentially significant
implications for experiments involving DFSs, in particular for the experimental
implementation, over DFSs, of the large class of quantum algorithms which can
function with arbitrary input states
Editorial: Roles and mechanisms of parasitism in aquatic microbial communities
International audienc
Sickness presenteeism determines job satisfaction via affective-motivational states
Research on the consequences of sickness presenteeism, or the phenomenon of attending work whilst ill, has focused predominantly on identifying its economic, health, and absenteeism outcomes, neglecting important attitudinal-motivational outcomes. A mediation model of sickness presenteeism as a determinant of job satisfaction via affective-motivational states (specifically engagement with work and addiction to work) is proposed. This model adds to the current literature, by focusing on (i) job satisfaction as an outcome of presenteeism, and (ii) the psychological processes associated with this. It posits presenteeism as psychological absence and work engagement and work addiction as motivational states that originate in that. An online survey was completed by 158 office workers on sickness presenteeism, work engagement, work addiction, and job satisfaction. The results of bootstrapped mediation analysis with observable variables supported the model. Sickness presenteeism was negatively associated with job satisfaction. This relationship was fully mediated by both engagement with work and addiction to work, explaining a total of 48.07% of the variance in job satisfaction. Despite the small sample, the data provide preliminary support for the model. Given that there is currently no available research on the attitudinal consequences of presenteeism, these findings offer promise for advancing theorising in this area
Nested quantum search and NP-complete problems
A quantum algorithm is known that solves an unstructured search problem in a
number of iterations of order , where is the dimension of the
search space, whereas any classical algorithm necessarily scales as . It
is shown here that an improved quantum search algorithm can be devised that
exploits the structure of a tree search problem by nesting this standard search
algorithm. The number of iterations required to find the solution of an average
instance of a constraint satisfaction problem scales as , with
a constant depending on the nesting depth and the problem
considered. When applying a single nesting level to a problem with constraints
of size 2 such as the graph coloring problem, this constant is
estimated to be around 0.62 for average instances of maximum difficulty. This
corresponds to a square-root speedup over a classical nested search algorithm,
of which our presented algorithm is the quantum counterpart.Comment: 18 pages RevTeX, 3 Postscript figure
Chemo- and Thermosensory Responsiveness of Grueneberg Ganglion Neurons Relies on Cyclic Guanosine Monophosphate Signaling Elements
Neurons of the Grueneberg ganglion (GG) in the anterior nasal region of mouse pups respond to cool temperatures and to a small set of odorants. While the thermosensory reactivity appears to be mediated by elements of a cyclic guanosine monophosphate (cGMP) cascade, the molecular mechanisms underlying the odor-induced responses are unclear. Since odor-responsive GG cells are endowed with elements of a cGMP pathway, specifically the transmembrane guanylyl cyclase subtype GC-G and the cyclic nucleotide-gated ion channel CNGA3, the possibility was explored whether these cGMP signaling elements may also be involved in chemosensory GG responses. Experiments with transgenic mice deficient for GC-G or CNGA3 revealed that GG responsiveness to given odorants was significantly diminished in these knockout animals. These findings suggest that a cGMP cascade may be important for both olfactory and thermosensory signaling in the GG. However, in contrast to the thermosensory reactivity, which did not decline over time, the chemosensory response underwent adaptation upon extended stimulation, suggesting that the two transduction processes only partially overlap. Copyright (C) 2011 S. Karger AG, Base
Nonequilibrium Statistical Mechanics of the Zero-Range Process and Related Models
We review recent progress on the zero-range process, a model of interacting
particles which hop between the sites of a lattice with rates that depend on
the occupancy of the departure site. We discuss several applications which have
stimulated interest in the model such as shaken granular gases and network
dynamics, also we discuss how the model may be used as a coarse-grained
description of driven phase-separating systems. A useful property of the
zero-range process is that the steady state has a factorised form. We show how
this form enables one to analyse in detail condensation transitions, wherein a
finite fraction of particles accumulate at a single site. We review
condensation transitions in homogeneous and heterogeneous systems and also
summarise recent progress in understanding the dynamics of condensation. We
then turn to several generalisations which also, under certain specified
conditions, share the property of a factorised steady state. These include
several species of particles; hop rates which depend on both the departure and
the destination sites; continuous masses; parallel discrete-time updating;
non-conservation of particles and sites.Comment: 54 pages, 9 figures, review articl
Tau neutrino deep inelastic charged current interactions
The nu_mu -> nu_tau oscillation hypothesis will be tested through nu_tau
production of tau in underground neutrino telescopes as well as long-baseline
experiments. We provide the full QCD framework for the evaluation of tau
neutrino deep inelastic charged current (CC) cross sections, including
next-leading-order (NLO) corrections, charm production, tau threshold, and
target mass effects in the collinear approximation. We investigate the
violation of the Albright-Jarlskog relations for the structure functions F_4,5
which occur only in heavy lepton (tau) scattering. Integrated CC cross sections
are evaluated naively over the full phase space and with the inclusion of DIS
kinematic cuts. Uncertainties in our evaluation based on scale dependence, PDF
errors and the interplay between kinematic and dynamical power corrections are
discussed and/or quantified.Comment: 28 pages, 10 figure
- …
