Abstract

A quantum algorithm is known that solves an unstructured search problem in a number of iterations of order d\sqrt{d}, where dd is the dimension of the search space, whereas any classical algorithm necessarily scales as O(d)O(d). It is shown here that an improved quantum search algorithm can be devised that exploits the structure of a tree search problem by nesting this standard search algorithm. The number of iterations required to find the solution of an average instance of a constraint satisfaction problem scales as dα\sqrt{d^\alpha}, with a constant α<1\alpha<1 depending on the nesting depth and the problem considered. When applying a single nesting level to a problem with constraints of size 2 such as the graph coloring problem, this constant α\alpha is estimated to be around 0.62 for average instances of maximum difficulty. This corresponds to a square-root speedup over a classical nested search algorithm, of which our presented algorithm is the quantum counterpart.Comment: 18 pages RevTeX, 3 Postscript figure

    Similar works

    Full text

    thumbnail-image

    Available Versions