369 research outputs found

    Impact of Holocene climate variability on lacustrine records and human settlements in South Greenland

    No full text
    International audienceDue to its sensitivity to climate changes, south Greenland is a particularly suitable area to study past global climate changes and their influence on locale Human settlements. A paleohydrological investigation was therefore carried out on two river-fed lakes: Lake Qallimiut and Little Kangerluluup, both located close to the Labrador Sea in the historic 5 farming center of Greenland. Two sediment cores (QAL-2011 and LKG-2011), spanning the last four millennia, were retrieved and showed similar thin laminae, described by high magnetic susceptibility and density, high titanium and TOC / TN atomic ratio, and coarse grain size. They are also characterized either by inverse grading followed by normal grading or by normal grading only and a prevalence of red amorphous particles 10 and lignocellulosic fragments, typical of flood deposits. Flood events showed similar trend in both records: they mainly occurred during cooler and wetter periods characterized by weaker Greenlandic paleo-temperatures, substantial glacier advances, and a high precipitation on the Greenlandic Ice Sheet and North Atlantic ice-rafting events. They can therefore be interpreted as a result of ice and 15 snow-melting episodes. They occurred especially during rapid climate changes (RCC) such as the Middle to Late Holocene transition around 2250 BC, the Sub-boreal/Sub-atlantic transition around 700 BC and the Little Ice Age (LIA) between AD 1300 and AD 1900, separated by cycles of 1500 years and driven by solar forcing. These global RCC revealed by QAL-2011 and LKG-2011 flood events may have influenced Human 20 settlements in south Greenland, especially the paleo-Eskimo cultures and the Norse settlement, and have been mainly responsible for their demise

    The response of the tandem pore potassium channel TASK-3 (K2P9.1) to voltage : gating at the cytoplasmic mouth

    Get PDF
    Although the tandem pore potassium channel TASK-3 is thought to open and shut at its selectivity filter in response to changes of extracellular pH, it is currently unknown whether the channel also shows gating at its inner, cytoplasmic mouth through movements of membrane helices M2 and M4.We used two electrode voltage clamp and single channel recording to show that TASK-3 responds to voltage in a way that reveals such gating. In wild-type channels, Popen was very low at negative voltages, but increased with depolarisation. The effect of voltage was relatively weak and the gating charge small, ∼0.17.Mutants A237T (in M4) and N133A (in M2) increased Popen at a given voltage, increasing mean open time and the number of openings per burst. In addition, the relationship between Popen andvoltagewas shifted to lesspositive voltages. Mutation of putative hinge glycines (G117A, G231A), residues that are conserved throughout the tandem pore channel family, reduced Popen at a given voltage, shifting the relationship with voltage to a more positive potential range. None of these mutants substantially affected the response of the channel to extracellular acidification. We have used the results from single channel recording to develop a simple kinetic model to show how gating occurs through two classes of conformation change, with two routes out of the open state, as expected if gating occurs both at the selectivity filter and at its cytoplasmic mouth

    Determinants of the voltage dependence of G protein modulation within calcium channel β subunits

    Get PDF
    CaVβ subunits of voltage-gated calcium channels contain two conserved domains, a src-homology-3 (SH3) domain and a guanylate kinase-like (GK) domain with an intervening HOOK domain. We have shown in a previous study that, although Gβγ-mediated inhibitory modulation of CaV2.2 channels did not require the interaction of a CaVβ subunit with the CaVα1 subunit, when such interaction was prevented by a mutation in the α1 subunit, G protein modulation could not be removed by a large depolarization and showed voltage-independent properties (Leroy et al., J Neurosci 25:6984–6996, 2005). In this study, we have investigated the ability of mutant and truncated CaVβ subunits to support voltage-dependent G protein modulation in order to determine the minimal domain of the CaVβ subunit that is required for this process. We have coexpressed the CaVβ subunit constructs with CaV2.2 and α2δ-2, studied modulation by the activation of the dopamine D2 receptor, and also examined basal tonic modulation. Our main finding is that the CaVβ subunit GK domains, from either β1b or β2, are sufficient to restore voltage dependence to G protein modulation. We also found that the removal of the variable HOOK region from β2a promotes tonic voltage-dependent G protein modulation. We propose that the absence of the HOOK region enhances Gβγ binding affinity, leading to greater tonic modulation by basal levels of Gβγ. This tonic modulation requires the presence of an SH3 domain, as tonic modulation is not supported by any of the CaVβ subunit GK domains alone

    The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1 : contributions of the pore domains

    Get PDF
    We have investigated the contribution to ionic selectivity of residues in the selectivity filter and pore helices of the P1 and P2 domains in the acid sensitive potassium channel TASK-1. We used site directed mutagenesis and electrophysiological studies, assisted by structural models built through computational methods. We have measured selectivity in channels expressed in Xenopus oocytes, using voltage clamp to measure shifts in reversal potential and current amplitudes when Rb+ or Na+ replaced extracellular K+. Both P1 and P2 contribute to selectivity, and most mutations, including mutation of residues in the triplets GYG and GFG in P1 and P2, made channels nonselective. We interpret the effects of these—and of other mutations—in terms of the way the pore is likely to be stabilised structurally. We show also that residues in the outer pore mouth contribute to selectivity in TASK-1. Mutations resulting in loss of selectivity (e.g. I94S, G95A) were associated with slowing of the response of channels to depolarisation. More important physiologically, pH sensitivity is also lost or altered by such mutations. Mutations that retained selectivity (e.g. I94L, I94V) also retained their response to acidification. It is likely that responses both to voltage and pH changes involve gating at the selectivity filter

    Agalsidase alfa versus agalsidase beta for the treatment of Fabry disease: an international cohort study

    Get PDF
    BACKGROUND: Two recombinant enzymes (agalsidase alfa 0.2 mg/kg/every other week and agalsidase beta 1.0 mg/kg/every other week) have been registered for the treatment of Fabry disease (FD), at equal high costs. An independent international initiative compared clinical and biochemical outcomes of the two enzymes. METHODS: In this multicentre retrospective cohort study, clinical event rate, left ventricular mass index (LVMI), estimated glomerular filtration rate (eGFR), antibody formation and globotriaosylsphingosine (lysoGb3) levels were compared between patients with FD treated with agalsidase alfa and beta at their registered dose after correction for phenotype and sex. RESULTS: 387 patients (192 women) were included, 248 patients received agalsidase alfa. Mean age at start of enzyme replacement therapy was 46 (±15) years. Propensity score matched analysis revealed a similar event rate for both enzymes (HR 0.96, P=0.87). The decrease in plasma lysoGb3 was more robust following treatment with agalsidase beta, specifically in men with classical FD (β: -18 nmol/L, P<0.001), persisting in the presence of antibodies. The risk to develop antibodies was higher for patients treated with agalsidase beta (OR 2.8, P=0.04). LVMI decreased in a higher proportion following the first year of agalsidase beta treatment (OR 2.27, P=0.03), while eGFR slopes were similar. CONCLUSIONS: Treatment with agalsidase beta at higher dose compared with agalsidase alfa does not result in a difference in clinical events, which occurred especially in those with more advanced disease. A greater biochemical response, also in the presence of antibodies, and better reduction in left ventricular mass was observed with agalsidase beta

    Global precipitation response to changing forcings since 1870

    Get PDF
    Predicting and adapting to changes in the hydrological cycle is one of the major challenges for the 21st century. To better estimate how it will respond to future changes in climate forcings, it is crucial to understand how the hydrological cycle has evolved in the past and why. In our study, we use an atmospheric global climate model with prescribed sea surface temperatures (SSTs) to investigate how, in the period 1870–2005, changing climate forcings have affected the global land temperature and precipitation. We show that between 1870 and 2005, prescribed SSTs (encapsulating other forcings and internal variability) determine the decadal and interannual variabilities of the global land temperature and precipitation, mostly via their influence in the tropics (25° S–25° N). In addition, using simulations with prescribed SSTs and considering the atmospheric response alone, we find that between 1930 and 2005 increasing aerosol emissions have reduced the global land temperature and precipitation by up to 0.4 °C and 30 mm yr&lt;sup&gt;−1&lt;/sup&gt;, respectively, and that between about 1950 and 2005 increasing greenhouse gas concentrations have increased them by up to 0.25 °C and 10 mm yr&lt;sup&gt;−1&lt;/sup&gt;, respectively. Finally, we suggest that between about 1950 and 1970, increasing aerosol emissions had a larger impact on the hydrological cycle than increasing greenhouse gas concentrations

    Nephrogenic diabetes insipidus.

    Get PDF
    PURPOSE OF REVIEW: In nephrogenic diabetes insipidus (NDI), the kidney is unable to concentrate urine despite elevated concentrations of the antidiuretic hormone arginine-vasopressin. In congenital NDI, polyuria and polydipsia are present from birth and should be immediately recognized to avoid severe episodes of dehydration. Unfortunately, NDI is still often recognized late after a 'diagnostic odyssey' involving false leads and dangerous treatments.Once diagnosed, appropriate treatment can be started. Moreover, laboratory studies have identified promising new compounds, which may help achieve urinary concentration independent of vasopressin. RECENT FINDINGS: MAGED2 mutations caused X-linked polyhydramnios with prematurity and a severe but transient form of antenatal Bartter's syndrome.We distinguish two types of hereditary NDI: a 'pure' type with loss of water only and a complex type with loss of water and ions. Mutations in the AVPR2 or AQP2 genes, encoding the vasopressin V2 receptor and the water channel Aquaporin2, respectively, lead to a 'pure' NDI with loss of water but normal conservation of ions. Mutations in genes that encode membrane proteins involved in sodium chloride reabsorption in the thick ascending limb of Henle's loop lead to Bartter syndrome, a complex polyuric-polydipsic disorder often presenting with polyhydramnios. A new variant of this was recently identified: seven families were described with transient antenatal Bartter's syndrome, polyhydramnios and MAGED2 mutations.Multiple compounds have been identified experimentally that may stimulate urinary concentration independently of the vasopressin V2 receptor. These compounds may provide new treatments for patients with X-linked NDI. SUMMARY: A plea for early consideration of the diagnosis of NDI, confirmation by phenotypic and/or genetic testing and appropriate adjustment of treatment in affected patients

    Urinary concentration: different ways to open and close the tap.

    Get PDF
    Nephrogenic diabetes insipidus (NDI) provides an excellent model for the benefits and insights that can be gained from studying rare diseases. The discovery of underlying genes identified key molecules involved in urinary concentration, including the type 2 vasopressin receptor AVPR2 and the water channel AQP2, which constitute obvious pharmacologic targets. Subsequently developed drugs targeting AVPR2 not only provide potential benefit to some patients with NDI, but are now used for much more common clinical applications as diverse as nocturnal enuresis and heart failure. Yet, the story is still evolving: clinical observations and animal experiments continue to discover new ways to affect urinary concentration. These novel pathways can potentially be exploited for therapeutic gain. Here we review the (patho)physiology of water homoeostasis, the current status of clinical management, and potential new treatments

    An optoelectronic framework enabled by low-dimensional phase-change films.

    Get PDF
    Accepted author version. The definitive version was published in: Nature 511, 206–211 (10 July 2014) doi:10.1038/nature13487The development of materials whose refractive index can be optically transformed as desired, such as chalcogenide-based phase-change materials, has revolutionized the media and data storage industries by providing inexpensive, high-speed, portable and reliable platforms able to store vast quantities of data. Phase-change materials switch between two solid states--amorphous and crystalline--in response to a stimulus, such as heat, with an associated change in the physical properties of the material, including optical absorption, electrical conductance and Young's modulus. The initial applications of these materials (particularly the germanium antimony tellurium alloy Ge2Sb2Te5) exploited the reversible change in their optical properties in rewritable optical data storage technologies. More recently, the change in their electrical conductivity has also been extensively studied in the development of non-volatile phase-change memories. Here we show that by combining the optical and electronic property modulation of such materials, display and data visualization applications that go beyond data storage can be created. Using extremely thin phase-change materials and transparent conductors, we demonstrate electrically induced stable colour changes in both reflective and semi-transparent modes. Further, we show how a pixelated approach can be used in displays on both rigid and flexible films. This optoelectronic framework using low-dimensional phase-change materials has many likely applications, such as ultrafast, entirely solid-state displays with nanometre-scale pixels, semi-transparent 'smart' glasses, 'smart' contact lenses and artificial retina devices.Engineering and Physical Sciences Research Council (EPSRC)OUP John Fell Fun

    Aquaporins: important but elusive drug targets.

    Get PDF
    The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators
    corecore