2 research outputs found

    Comparing carbon isotope composition of bulk wood and holocellulose fromQuercus cerris,Fraxinus ornusandPinus radiatatree rings

    Get PDF
    Tree-ring \u3b413C is widely employed in ecophysiological studies, because it represents an integrated proxy of the ratio between photosynthesis (A) and stomatal conductance (g), which expresses the intrinsic water use efficiency (iWUE), strongly affected by the environmental conditions experienced by the plant during its life span. Tree-ring \u3b413C also reflects long term variations of atmospheric CO2 concentration and of its carbon isotope composition, partly due to increasing anthropogenic emissions. Carbon isotope abundances in tree rings can be assessed on bulk wood as well as on wood biochemical components, wich show different \u3b413C values because of secondary discrimination during biosynthesis. We present the results of a comparison between \u3b413C values of bulk wood and holocellulose samples obtained from the last three (1999, 2000 and 2001) annual growth rings of two hardwood (Quercus cerris L. and Fraxinus ornus L. and one conifer (Pinus radiata D. Don, species. We found that 13C values differed significantly among tree species, both in the case of holocellulose and bulk wood, but only in the case of P. radiata bulk wood samples tend to provide more negative \u3b413C values than holocellulose, as reported in the literature. We suggest that, at least for the two hardwood species studied, bulk wood is a suitable material to work with for \u3b413C assessment, whilst in P. radiata holocellulose could provide a more stable and reliable index, when studying plant ecophysiological responses to changing environmental conditions

    CMS physics technical design report: Addendum on high density QCD with heavy ions

    Get PDF
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies ,will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low pT inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high pT hadrons which yield "tomographic" information of the hottest and densest phases of the reaction.0info:eu-repo/semantics/publishe
    corecore