100 research outputs found
Recommended from our members
Cosmogenic neutron production at the Sudbury Neutrino Observatory
Neutrons produced in nuclear interactions initiated by cosmic-ray muons present an irreducible background to many rare-event searches, even in detectors located deep underground. Models for the production of these neutrons have been tested against previous experimental data, but the extrapolation to deeper sites is not well understood. Here we report results from an analysis of cosmogenically produced neutrons at the Sudbury Neutrino Observatory. A specific set of observables are presented, which can be used to benchmark the validity of geant4 physics models. In addition, the cosmogenic neutron yield, in units of 10-4 cm2/(g·μ), is measured to be 7.28±0.09(stat)-1.12+1.59(syst) in pure heavy water and 7.30±0.07(stat)-1.02+1.40(syst) in NaCl-loaded heavy water. These results provide unique insights into this potential background source for experiments at SNOLAB
Cosmogenic neutron production at the Sudbury Neutrino Observatory
Neutrons produced in nuclear interactions initiated by cosmic-ray muons present an irreducible background to many rare-event searches, even in detectors located deep underground. Models for the production of these neutrons have been tested against previous experimental data, but the extrapolation to deeper sites is not well understood. Here we report results from an analysis of cosmogenically produced neutrons at the Sudbury Neutrino Observatory. A specific set of observables are presented, which can be used to benchmark the validity of geant4 physics models. In addition, the cosmogenic neutron yield, in units of 10-4 cm2/(g·μ), is measured to be 7.28±0.09(stat)-1.12+1.59(syst) in pure heavy water and 7.30±0.07(stat)-1.02+1.40(syst) in NaCl-loaded heavy water. These results provide unique insights into this potential background source for experiments at SNOLAB
Repair of Acute Respiratory Distress Syndrome in COVID-19 by Stromal Cells (REALIST-COVID Trial):A Multicentre, Randomised, Controlled Trial
RationaleMesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in COVID-19-related Acute Respiratory Distress Syndrome (ARDS).ObjectivesWe investigated safety and efficacy of ORBCEL-C (CD362-enriched, umbilical cord-derived MSCs) in COVID-related ARDS.MethodsThis multicentre, randomised, double-blind, allocation concealed, placebo-controlled trial (NCT03042143) randomised patients with moderate-to-severe COVID-related ARDS to receive ORBCEL-C (400million cells) or placebo (Plasma-Lyte148).MeasurementsThe primary safety and efficacy outcomes were incidence of serious adverse events and oxygenation index at day 7 respectively. Secondary outcomes included respiratory compliance, driving pressure, PaO2/FiO2 ratio and SOFA score. Clinical outcomes relating to duration of ventilation, length of intensive care unit and hospital stays, and mortality were collected. Long-term follow up included diagnosis of interstitial lung disease at 1 year, and significant medical events and mortality at 2 years. Transcriptomic analysis was performed on whole blood at day 0, 4 and 7.Main results60 participants were recruited (final analysis n=30 ORBCEL-C, n=29 placebo: 1 in placebo group withdrew consent). 6 serious adverse events occurred in the ORBCEL-C and 3 in the placebo group, RR 2.9(0.6-13.2)p=0.25. Day 7 mean[SD] oxygenation index did not differ (ORBCEL-C 98.357.2], placebo 96.667.3). There were no differences in secondary surrogate outcomes, nor mortality at day 28, day 90, 1 or 2 years. There was no difference in prevalence of interstitial lung disease at 1year nor significant medical events up to 2 years. ORBCEL-C modulated the peripheral blood transcriptome.ConclusionORBCEL-C MSCs were safe in moderate-to-severe COVID-related ARDS, but did not improve surrogates of pulmonary organ dysfunction. Clinical trial registration available at www.Clinicaltrialsgov, ID: NCT03042143. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/)
Electrolytic ablation of the rat pancreas: a feasibility trial
BACKGROUND: Pancreatic cancer is a biologically aggressive disease with less than 20% of patients suitable for a "curative" surgical resection. This, combined with the poor 5-year survival indicates that effective palliative methods for symptom relief are required. Currently there are no ablative techniques to treat pancreatic cancer in clinical use. Tissue electrolysis is the delivery of a direct current between an anode and cathode to induce localised necrosis. Electrolysis has been shown to be safe and reliable in producing hepatic tissue and tumour ablation in animal models and in a limited number of patients. This study investigates the feasibility of using electrolysis to produce localised pancreatic necrosis in a healthy rat model. METHOD: Ten rats were studied in total. Eight rats were treated with variable "doses" of coulombs, and the systemic and local effects were assessed; 2 rats were used as controls. RESULTS: Seven rats tolerated the procedure well without morbidity or mortality, and one died immediately post procedure. One control rat died on induction of anaesthesia. Serum amylase and glucose were not significantly affected. CONCLUSION: Electrolysis in the rat pancreas produced localised necrosis and appears both safe, and reproducible. This novel technique could offer significant advantages for patients with unresectable pancreatic tumours. The next stage of the study is to assess pancreatic electrolysis in a pig model, prior to human pilot studies
Developmental Programming Mediated by Complementary Roles of Imprinted Grb10 in Mother and Pup
Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period. The combined actions of Grb10 expressed in the mother, controlling supply, and Grb10 expressed in the offspring, controlling demand, jointly regulate offspring growth. Furthermore, Grb10 determines the proportions of lean and fat tissue during development, thereby influencing energy homeostasis in the adult. Most strikingly, we show that the development of normal lean/fat proportions depends on the combined effects of Grb10 expressed in the mother, which has the greater effect on offspring adiposity, and Grb10 expressed in the offspring, which influences lean mass. These distinct functions of Grb10 in mother and pup act complementarily, which is consistent with a coadaptation model of imprinting evolution, a model predicted but for which there is limited experimental evidence. In addition, our findings identify Grb10 as a key genetic component of developmental programming, and highlight the need for a better understanding of mother-offspring interactions at the genetic level in predicting adult disease risk
Cosmogenic neutron production at the Sudbury Neutrino Observatory
Neutrons produced in nuclear interactions initiated by cosmic-ray muons present an irreducible background to many rare-event searches, even in detectors located deep underground. Models for the production of these neutrons have been tested against previous experimental data, but the extrapolation to deeper sites is not well understood. Here we report results from an analysis of cosmogenically produced neutrons at the Sudbury Neutrino Observatory. A specific set of observables are presented, which can be used to benchmark the validity of geant4 physics models. In addition, the cosmogenic neutron yield, in units of 10-4 cm2/(g·μ), is measured to be 7.28±0.09(stat)-1.12+1.59(syst) in pure heavy water and 7.30±0.07(stat)-1.02+1.40(syst) in NaCl-loaded heavy water. These results provide unique insights into this potential background source for experiments at SNOLAB
Dose prediction for repurposing nitazoxanide in SARS-CoV-2 treatment or chemoprophylaxis
Background
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has been declared a global pandemic and urgent treatment and prevention strategies are needed. Nitazoxanide, an anthelmintic drug has been shown to exhibit in vitro activity against SARS‐CoV‐2. The present study used physiologically‐based pharmacokinetic (PBPK) modelling to inform optimal doses of nitazoxanide capable of maintaining plasma and lung tizoxanide exposures above the reported SARS‐CoV‐2 EC90.
Methods
A whole‐body PBPK model was validated against available pharmacokinetic data for healthy individuals receiving single and multiple doses between 500–4000 mg with and without food. The validated model was used to predict doses expected to maintain tizoxanide plasma and lung concentrations above the EC90 in >90% of the simulated population. PopDes was used to estimate an optimal sparse sampling strategy for future clinical trials.
Results
The PBPK model was successfully validated against the reported human pharmacokinetics. The model predicted optimal doses of 1200 mg QID, 1600 mg TID, 2900 mg BID in the fasted state and 700 mg QID, 900 mg TID and 1400 mg BID when given with food. For BID regimens an optimal sparse sampling strategy of 0.25, 1, 3 and 12h post dose was estimated.
Conclusion
The PBPK model predicted tizoxanide concentrations within doses of nitazoxanide already given to humans previously. The reported dosing strategies provide a rational basis for design of clinical trials with nitazoxanide for the treatment or prevention of SARS‐CoV‐2 infection. A concordant higher dose of nitazoxanide is now planned for investigation in the seamless phase I/IIa AGILE trial (www.agiletrial.net)
Lack of antiviral activity of probenecid in vitro and in Syrian golden hamsters
Objectives
Antiviral interventions are required to complement vaccination programmes and reduce the global burden of COVID-19. Prior to initiation of large-scale clinical trials, robust preclinical data to support candidate plausibility are required. This work sought to further investigate the putative antiviral activity of probenecid against SARS-CoV-2.
Methods
Vero E6 cells were preincubated with probenecid, or control media for 2 h before infection (SARS-CoV-2/Human/Liverpool/REMRQ0001/2020). Probenecid or control media was reapplied, plates reincubated and cytopathic activity quantified by spectrophotometry after 48 h. In vitro human airway epithelial cell (HAEC) assays were performed for probenecid against SARS-CoV-2-VoC-B.1.1.7 (hCoV-19/Belgium/rega-12211513/2020; EPI_ISL_791333, 2020-12-21) using an optimized cell model for antiviral testing. Syrian golden hamsters were intranasally inoculated (SARS-CoV-2 Delta B.1.617.2) 24 h prior to treatment with probenecid or vehicle for four twice-daily doses.
Results
No observable antiviral activity for probenecid was evident in Vero E6 or HAEC assays. No reduction in total or subgenomic RNA was observed in terminal lung samples (P > 0.05) from hamsters. Body weight of uninfected hamsters remained stable whereas both probenecid- and vehicle-treated infected hamsters lost body weight (P > 0.5).
Conclusions
These data do not support probenecid as a SARS-CoV-2 antiviral drug
- …