22 research outputs found

    Is mimicry a diversification-driver in ants? Biogeography, ecology, ethology, genetics and morphology define a second West-Palaearctic Colobopsis species (Hymenoptera: Formicidae)

    Get PDF
    The West-Palaearctic Colobopsis ant populations have long been considered a single species (Colobopsis truncata). We studied the diversity of this species by employing a multidisciplinary approach and combining data from our surveys, museum and private collections, and citizen science platforms. As a result, we have revealed the existence of a second species, which we describe as Colobopsis imitans sp. nov., distributed allopatrically from Co. truncata and living in the Maghreb, Sicily and southern Iberia. While the pigmentation of Co. truncata is reminiscent of Dolichoderus quadripunctatus, that of Co. imitans is similar to Crematogaster scutellaris, with which Co. imitans lives in close spatial association, and whose foraging trails it habitually follows, similar to Camponotus lateralis and other ant-mimicking ants. The isolation between Co. imitans and Co. truncata seems to have occurred relatively recently because of significant, yet not extreme, morphometric differentiation, and to mtDNA polyphyly. Both Co. imitans and Co. truncata appear to employ mimicry of an unpalatable or aggressive ant species as an important defensive strategy; this 'choice' of a different model species is motivated by biogeographic reasons and appears to act as a critical evolutionary driver of their diversification

    Building Blocks for a Clinical Imaging Informatics Environment

    No full text
    Over the past 20 years, imaging informatics has been driven by the widespread adoption of radiology information and picture archiving and communication and speech recognition systems. These three clinical information systems are commonplace and are intuitive to most radiologists as they replicate familiar paper and film workflow. So what is next? There is a surge of innovation in imaging informatics around advanced workflow, search, electronic medical record aggregation, dashboarding, and analytics tools for quality measures (Nance et al., AJR Am J Roentgenol 200:1064–1070, 2013). The challenge lies in not having to rebuild the technological wheel for each of these new applications but instead attempt to share common components through open standards and modern development techniques. The next generation of applications will be built with moving parts that work together to satisfy advanced use cases without replicating databases and without requiring fragile, intense synchronization from clinical systems. The purpose of this paper is to identify building blocks that can position a practice to be able to quickly innovate when addressing clinical, educational, and research-related problems. This paper is the result of identifying common components in the construction of over two dozen clinical informatics projects developed at the University of Maryland Radiology Informatics Research Laboratory. The systems outlined are intended as a mere foundation rather than an exhaustive list of possible extensions
    corecore