48 research outputs found

    Madden-Julian Oscillation as simulated by the MPI earth system model: Over the last and into the next Millennium

    No full text
    The Madden-Julian oscillation (MJO), as represented by the Max Planck Institute for Meteorology Earth System Model (MPI-ESM), is analyzed for the first time over time periods ranging from decades to more than a millennium. Particular attention is paid to the behavior of the MJO index as calculated from the leading pair of empirical orthogonal functions (EOFs) derived from a multivariate EOF analysis. The analysis of 1000 year simulations with the MPI-ESM and its predecessor reveals significant interannual (2–6 years) to interdecadal (10–20 years) internal variability of the MJO but relatively little evidence of significant variability at longer timescales in unforced runs. A 1200 year experiment forced by the best estimates of solar variability, volcanism, and changing atmospheric composition indicates that the MJO simulated in the twentieth century is very similar to the MJO simulated since AD 800. The analysis of sensitivity experiments shows the influence of different external forcings: solar variability may contribute to MJO variability on 11 and 22 year periods, but this is difficult to separate from internal variability; and there is a hint of enhanced decadal variability associated with volcanic forcing. Land use change and changes associated with anthropogenic forcing over the twentieth century have no detectable effect on the simulated MJO. An increase of the CO2 concentrations by 1% per year starting in AD 1850 leads to an increase in the MJO strength in the twenty-first century, as does the warming associated with an abrupt quadrupling of the atmospheric CO2 concentration, suggesting that the MJO may intensify with warming

    The influence of regional circulation patterns on wet and dry mineral dust and sea salt deposition over Greenland

    Get PDF
    Annually resolved ice core records from different regions over the Greenland ice sheet (GrIS) are used to investigate the spatial and temporal variability of calcium (Ca2+, mainly from mineral dust) and sodium (Na+, mainly from sea salt) deposition. Cores of high common inter-annual variability are grouped with an EOF analysis, resulting in regionally representative Ca2+ and Na+ records for northeastern and central Greenland. Utilizing a regression and validation method with ERA-40 reanalysis data, these common records are associated with distinct regional atmospheric circulation patterns over the North American Arctic, Greenland, and Central to Northern Europe. These patterns are interpreted in terms of transport and deposition of the impurities. In the northeastern part of the GrIS sea salt records reflect the intrusion of marine air masses from southeasterly flow. A large fraction of the Ca2+ variability in this region is connected to a circulation pattern suggesting transport from the west and dry deposition. This pattern is consistent with the current understanding of a predominantly Asian source of the dust deposited over the GrIS. However, our results also indicate that a significant fraction of the inter-annual dust variability in NE and Central Greenland is determined by the frequency and intensity of wet deposition during the season of high atmospheric dust loading, rather than representing the variability of the Asian dust source and/or long-range transport to Greenland. The variances in the regional proxy records explained by the streamfunction patterns are high enough to permit reconstructions of the corresponding regional deposition regimes and the associated circulation pattern

    Madagascar corals track sea surface temperature variability in the Agulhas Current core region over the past 334 years

    Get PDF
    The Agulhas Current (AC) is the strongest western boundary current in the Southern Hemisphere and is key for weather and climate patterns, both regionally and globally. Its heat transfer into both the midlatitude South Indian Ocean and South Atlantic is of global significance. A new composite coral record (Ifaty and Tulear massive Porites corals), is linked to historical AC sea surface temperature (SST) instrumental data, showing robust correlations. The composite coral SST data start in 1660 and comprise 200 years more than the AC instrumental record. Numerical modelling exhibits that this new coral derived SST record is representative for the wider core region of the AC. AC SSTs variabilities show distinct cooling through the Little Ice Age and warming during the late 18th, 19th and 20th century, with significant decadal variability superimposed. Furthermore, the AC SSTs are teleconnected with the broad southern Indian and Atlantic Oceans, showing that the AC system is pivotal for inter-ocean heat exchange south of Africa
    corecore