115 research outputs found

    Modeling and Optimization for Morphing Wing Concept Generation II

    Get PDF
    This report documents a series of investigations to develop an approach for structural sizing of various morphing wing concepts. For the purposes of this report, a morphing wing is one whose planform can make significant shape changes in flight - increasing wing area by 50% or more from the lowest possible area, changing sweep 30 or more, and / or increasing aspect ratio by as much as 200% from the lowest possible value. These significant changes in geometry mean that the underlying load-bearing structure changes geometry. While most finite element analysis packages provide some sort of structural optimization capability, these codes are not amenable to making significant changes in the stiffness matrix to reflect the large morphing wing planform changes. The investigations presented here use a finite element code capable of aeroelastic analysis in three different optimization approaches -a "simultaneous analysis" approach, a "sequential" approach, and an "aggregate" approach

    Morphing Wing Weight Predictors and Their Application in a Template-Based Morphing Aircraft Sizing Environment II

    Get PDF
    This report presents an approach for sizing of a morphing aircraft based upon a multi-level design optimization approach. For this effort, a morphing wing is one whose planform can make significant shape changes in flight - increasing wing area by 50% or more from the lowest possible area, changing sweep 30 or more, and/or increasing aspect ratio by as much as 200% from the lowest possible value. The top-level optimization problem seeks to minimize the gross weight of the aircraft by determining a set of "baseline" variables - these are common aircraft sizing variables, along with a set of "morphing limit" variables - these describe the maximum shape change for a particular morphing strategy. The sub-level optimization problems represent each segment in the morphing aircraft's design mission; here, each sub-level optimizer minimizes fuel consumed during each mission segment by changing the wing planform within the bounds set by the baseline and morphing limit variables from the top-level problem

    Modeling and Optimization for Morphing Wing Concept Generation

    Get PDF
    This report consists of two major parts: 1) the approach to develop morphing wing weight equations, and 2) the approach to size morphing aircraft. Combined, these techniques allow the morphing aircraft to be sized with estimates of the morphing wing weight that are more credible than estimates currently available; aircraft sizing results prior to this study incorporated morphing wing weight estimates based on general heuristics for fixed-wing flaps (a comparable "morphing" component) but, in general, these results were unsubstantiated. This report will show that the method of morphing wing weight prediction does, in fact, drive the aircraft sizing code to different results and that accurate morphing wing weight estimates are essential to credible aircraft sizing results

    The potential of genetic algorithms for conceptual design of rotor systems

    Get PDF
    The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors

    A Mixed Integer Efficient Global Optimization Algorithm for the Simultaneous Aircraft Allocation-Mission-Design Problem

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143026/1/6.2017-1305.pd

    Turning turtle: scaling relationships and self-righting ability in Chelydra serpentina

    Get PDF
    From The Royal Society via Jisc Publications RouterHistory: received 2021-01-26, accepted 2021-01-28, pub-electronic 2021-03-03, pub-print 2021-03-10Article version: VoRPublication status: PublishedFunder: Leverhulme Trust; Id: http://dx.doi.org/10.13039/501100000275; Grant(s): RPG-2019-104Testudines are susceptible to inversion and self-righting using their necks, limbs or both, to generate enough mechanical force to flip over. We investigated how shell morphology, neck length and self-righting biomechanics scale with body mass during ontogeny in Chelydra serpentina, which uses neck-powered self-righting. We found that younger turtles flipped over twice as fast as older individuals. A simple geometric model predicted the relationships of shell shape and self-righting time with body mass. Conversely, neck force, power output and kinetic energy increase with body mass at rates greater than predicted. These findings were correlated with relatively longer necks in younger turtles than would be predicted by geometric similarity. Therefore, younger turtles self-right with lower biomechanical costs than predicted by simple scaling theory. Considering younger turtles are more prone to inverting and their shells offer less protection, faster and less costly self-righting would be advantageous in overcoming the detriments of inversion

    The 25th Anniversary of the Baby Doe Rules: Perspectives from the Fields of Law, Health Care, Ethics, and Disability Policy

    Get PDF
    A highly publicized and controversial case involving the withholding of medical treatment from a “Baby Doe” with Down syndrome gave rise in 1984 to the federal law known as the Baby Doe Rules, which went into effect the following year. The law conditions the grant of federal funds for any state’s child protective services program on the state’s assurance that it can respond to reports of medical neglect, which may include the withholding of medical treatment from disabled infants with life-threatening conditions. Leading scholars and practitioners from the fields of health care, law, ethics, and disability policy who are experts in the field of neonatal medicine and decision-making involving very premature and other medically at-risk infants gathered to provide thoughtful commentary and debate on the occasion of the 25th Anniversary of the Baby Doe Rules. The Georgia State University Law Review will publish a symposium volume on the topic in Fall 2009

    The 25th Anniversary of the Baby Doe Rules: Perspectives from the Fields of Law, Health Care, Ethics, and Disability Policy

    Get PDF
    A highly publicized and controversial case involving the withholding of medical treatment from a “Baby Doe” with Down syndrome gave rise in 1984 to the federal law known as the Baby Doe Rules, which went into effect the following year. The law conditions the grant of federal funds for any state’s child protective services program on the state’s assurance that it can respond to reports of medical neglect, which may include the withholding of medical treatment from disabled infants with life-threatening conditions. Leading scholars and practitioners from the fields of health care, law, ethics, and disability policy who are experts in the field of neonatal medicine and decision-making involving very premature and other medically at-risk infants gathered to provide thoughtful commentary and debate on the occasion of the 25th Anniversary of the Baby Doe Rules. The Georgia State University Law Review will publish a symposium volume on the topic in Fall 2009

    Scaling of axial muscle architecture in juvenile Alligator mississippiensis reveals an enhanced performance capacity of accessory breathing mechanisms

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2020-11-16, rev-recd 2021-07-08, accepted 2021-07-12, pub-electronic 2021-07-23Article version: VoRPublication status: PublishedFunder: Biotechnology and Biological Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/I021116/1Funder: National Science Foundation; Id: http://dx.doi.org/10.13039/100000001; Grant(s): 17565187Abstract: Quantitative functional anatomy of amniote thoracic and abdominal regions is crucial to understanding constraints on and adaptations for facilitating simultaneous breathing and locomotion. Crocodilians have diverse locomotor modes and variable breathing mechanics facilitated by basal and derived (accessory) muscles. However, the inherent flexibility of these systems is not well studied, and the functional specialisation of the crocodilian trunk is yet to be investigated. Increases in body size and trunk stiffness would be expected to cause a disproportionate increase in muscle force demands and therefore constrain the basal costal aspiration mechanism, necessitating changes in respiratory mechanics. Here, we describe the anatomy of the trunk muscles, their properties that determine muscle performance (mass, length and physiological cross‐sectional area [PCSA]) and investigate their scaling in juvenile Alligator mississippiensis spanning an order of magnitude in body mass (359 g–5.5 kg). Comparatively, the expiratory muscles (transversus abdominis, rectus abdominis, iliocostalis), which compress the trunk, have greater relative PCSA being specialised for greater force‐generating capacity, while the inspiratory muscles (diaphragmaticus, truncocaudalis ischiotruncus, ischiopubis), which create negative internal pressure, have greater relative fascicle lengths, being adapted for greater working range and contraction velocity. Fascicle lengths of the accessory diaphragmaticus scaled with positive allometry in the alligators examined, enhancing contractile capacity, in line with this muscle's ability to modulate both tidal volume and breathing frequency in response to energetic demand during terrestrial locomotion. The iliocostalis, an accessory expiratory muscle, also demonstrated positive allometry in fascicle lengths and mass. All accessory muscles of the infrapubic abdominal wall demonstrated positive allometry in PCSA, which would enhance their force‐generating capacity. Conversely, the basal tetrapod expiratory pump (transversus abdominis) scaled isometrically, which may indicate a decreased reliance on this muscle with ontogeny. Collectively, these findings would support existing anecdotal evidence that crocodilians shift their breathing mechanics as they increase in size. Furthermore, the functional specialisation of the diaphragmaticus and compliance of the body wall in the lumbar region against which it works may contribute to low‐cost breathing in crocodilians

    Inferring cost of transport from whole-body kinematics in three sympatric turtle species with different locomotor habits

    Get PDF
    Chelonians are mechanically unusual vertebrates as an exoskeleton limits their body wall mobility. They generallymove slowly on land and have aquatic or semi-aquatic lifestyles. Somewhat surprisingly, the limitedexperimental work that has been done suggests that their energetic cost of transport (CoT) are relatively low.This study examines the mechanical evidence for CoT in three turtle species that have differing degrees ofterrestrial activity. Our results show that Apolone travels faster than the other two species, and that Chelydra hashigher levels of yaw. All the species show poor mean levels of energy recovery, and, whilst there is considerablevariation, never show the high levels of energy recovery seen in cursorial quadrupeds. The mean mechanical CoTis 2 to 4 times higher than is generally seen in terrestrial animals. We therefore find no mechanical support for alow CoT in these species. This study illustrates the need for research on a wider range of chelonians to discoverwhether there are indeed general trends in mechanical and metabolic energy costs
    corecore