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The capabilities of genetic algorithms as a non-c'alculus based, global search method make

them potentially useful in the conceptual design of rotor systems. Coupling reasonably

simple analysis tools to the genetic algorithm was accomplished, and the resulting prog-ram

was used to generate designs for rotor systems to match requirements similar to those of

both an existing helicopter and a proposed helicopter design. This provides a comparison

with the existing design and also provides insight into the potential of genetic algorithms in

design of new rotors.
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INTRODUCTION

Conceptual design of rotor systems often relies on partially qualitative decisions made by

the members of a design team. The selection of airfoil sections for the rotor blades provides

one example of a partially qualitative decision. Decisions such as this, by their very nature,

c_ be bi_ed by the experience _d personal pre_rences of the design team.
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quantitative decisions also made during rotor system design can be quite complex, and

numerical optimization techniques have been introduced to assist a design team in finding

the "best" rotor system design. By introducing a design tool that would not only be useful

in rotor system sizing where the numerical optimization methods are effective, but that

would also provide a logical means for making configuration decisions, the process of

conceptual design for rotors may be made simpler and taster. Further improvement in the

process results if several design concepts could be evaluated simultaneously by the tool.

Design configurations that might have been ignored or dismissed early in the design process

by the design team may actually prove to be better design choices. Genetic Algorithms

(GA) possess features that can form the basis for such a design tool.

The rapidly _owing use of genetic algorithms in en_neering problems can be extended to

include rotor system design, sizing and selection. A genetic algorithm-based code to design

a low-power, light-weight rotor system demonstrates the feasibility of using this type of

methodology in conceptual design of rotor systems and suggests extension to the entire

realm of rotorcraft design.

The following section provides a brief overview of the major principles of genetic

algorithms. This is followed by a discussion of the application of genetic algorithms to

rotor system design. Ensuing sections discuss the development and validation of the

analysis methodology used in this exercise, and the results of using the GA-based code to

design rotor systems for requirements of both an existing and a proposed rotor system.

Finally presented are some remarks about further applications and research for genetic

algorithms, as well as conclusions reached in the work discussed in this paper.



GENETIC ALGORITHMS-AN OVERVIEW

Computer scientists developed genetic algorithms during the 1960s and 1970s as a

programming technique for constructing computer programs 1. It was later realized that this

type of algorithm "also had applications in other fields, in particular, as an optimization tool.

Only recently have applications of GA appeared in aerospace engineering problems 2. This

concept originated in work presented by Holland 3, was expanded by Goldberg 4 and many

others, and has now developed into an accepted search and optimization technique. Details

of the workings and theory of genetic algorithms are described in a vast collection of

references (see Reference 5), so only a brief overview is given here.

Genetic 'algorithms work by mimicking the "survival of the fittest" patterns of natural

selection and reproduction that are displayed in biologicN populations. Design variables.

the "genes" of a Nven design, are mapped into binary stings. These strings are then

concatenated to form the "chromosome" for a combination of variables that represent an

individual design point. The genetic algorithm works with these binary chromosomes,

rather than with the actual design parameters. This coding feature allows for a

simultaneous use of discrete, integer and continuous design variables 6.

An initial generation is created by randomly placing "l"s and "0"s along the chromosomes

for a given population size. For example, a population size of 30 individuals will have 30

different chromosome strings. This population generally maintains the same size

throughout the execution of the genetic algorithm. The values of the design variables in

each of these individuals is decoded from the binary string through mapping relationships.

From these values, afitness value is assigned to each individual. This fitness is analogous to

the objective function value in a numerical optimization problem. Individual chromosomes



with high fimessare more likely to survive and be used as "parents"for a subsequent

generationof designs.

The search procedure used by GA follows a structured, probabilistic information exchange

among the population of design points instead of the more familiar calculus-based search

commonly applied in numerical optimization problems. The search includes a crossover

process, where a "child" inherits traits from both of its "parents", and a mutation, where a

bit in the chromosome string is changed, introducing a trait not seen in either parent. Figure

I displays the crossover and mutation operators.

Crossover
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P_entStrings

00000 000

11111 111

Crossover
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Figure 1. Crossover and Mutation Operators

This procedure benefits from a feature termed implicit parallelism 4. Sections of the binary

string, or patterns of "l"s and "0"s in the chromosome, represent characteristics of the

design which provide a better than average fitness to the design; for example, a pattern

representing low disk loading in a rotor system would be associated with a low-power rotor

system. These sections of the string, called schema, are the building blocks of good

designs. Individuals in the genetic algorithm population exchange their information, but the

building blocks associated with the highly fit individuals propagate through the population

with an increasing frequency, because individuals with these schema will have higher fitness



and be more likely to survive and reproduce. Researchersin GA have found that this

processingof schemaactsat a levelnearn3 per generation, where n is the population size 3.

This implicit parallelism occurs even though the GA requires only n fimess evaluations per

generation, implying that the important schema are processed at a rate of the number of

fimess evaluations cubed.

GENETIC ALGORITHMS IN ROTOR SYSTEM DESIGN

Rotor system design encompasses many different engineering disciplines and can otken be

quite complex in nature. Desirable rotor systems require minimum power under various

flight conditions, are controllable, have low weight, have low complexity, have low acoustic

signature, and possess several other characteristics. The problem of designing a low-power.

low-weight rotor system demonstrates the potential for using genetic algorithms as part of a

conceptu_ design tool. Features unique to genetic algorithms provide the capability, for this

kind of design tool. As with many applications of genetic algorithms to en_neering

problems, some additions and variations of the basic GA approach were necessary to

complete this design task.

Rationale fi_r Genetic Algorithms

Many current efforts to improve rotor systems have revolved around numerical optimization

of rotors for various objectives 7. The genetic algorithm code does not replace these

approaches, rather, it augments these other methcxts. Genetic algorithms were chosen for

use in conceptual design for two major reasons. The first of these is the GA's ability to

simultaneously consider the three types of design variables (continuous, integer, and

discrete), and the second relates to GA's search properties as opposed to those of a

calculus-based procedure. Additionally, the search from a population of points, rather than



from a single point, reflects the concept of parallel design efforts for different rotor

configurations.

As mentioned before, conceptual design involves decisions, such as selection of airtbil

section, based on the experience of the designer. Using discrete variables in a systematic

way to represent design choices such as this provides vast capability in a design code. In

the more general sense of rotorcraft design, the configuration of the aircraft itself could be

considered a design variable. For example, a single variable could represent a single main

rotor, a front-to-back tandem rotor, a side-by-side tandem rotor, or a coaxial rotor

configuration. The fitness evaluation of individual designs drives the genetic algorithm's

search through the design space. By using configuration-type variables in the problem to

represent those design features that are norm'ally subjected to qualitative or partially

qualitative decision making, the GA helps to give numerical values to some of these

traditionally non-quantitative design decisions. The set of variables examined in this work

includes a discrete one representing airfoil section along with the integer variable for

number of blades, as well as several variables that are continuous (tip speed, disk loading,

solidity, linear twist and taper ratio). This provides an automated selection of blade airfoil

section as well as determining the number of blades and values for the continuous variables.

Simultaneous evaluation of these three types of design variables by the genetic "algorithm

suggests that GA can attempt a wider problem domain than most traditional numerical

optimization methods.

Much of the recent work toward optimal rotor design has yielded promising results, but has

relied on calculus-based methods for finding optimal design points. The genetic algorithm,

because it is not calculus based, has some advantage as a conceptual design tool. GA can

be used as a global optimizer of highly non-smooth and discontinuous functions because it



does not require evaluation of gradients and has no requirement for functional continuity.

For a highly complex, and multi-modal design space, the GA provides a rapid search in the

direction of the global optimum. The requirement of low power and low weight for the

problem examined in this paper results in a complex design space that eludes simple

description with respect to its modal nature, continuity., or convexity. Hence. this problem

of desibming a light-weigtm low-power rotor system provides a good test for a genetic

_gorithm based-design code. and finding a design solution displays the abilirv to use GA in

complex rotorcraft design problems during the conceptual phase.

Genetic algorithms search through the design space using a population of points, rather than

proceeding from point to point. The evaluated population, especi',.flly in early generations,

contains a diverse selection of possible designs: in essence, several different designs are

evaluated in parallel. Several studies of engineering desimners suggest that when presented

with a design problem, the designers tend to work using a single-concept design strategy,

continua.lly re-working one design until either the design requirements are satisfied or the

concept proves futile 8. The ability to evaluate several different designs at once may allow

consideration of designs that would otherwise never have been investigated.

As with most design tools, genetic algorithms have some disadvantages. The relative

newness of the approach means that several problems associated with the theories of

population size and control parameter values have yet to be resolved. Researchers

examining genetic algorithms have undertaken several studies to determine appropriate

control parameters 9, 10. Unfortunately for the users of GA, the findings have occasionally

been contradictory at worst and confusing at best. Much of the work is empirical,

suggesting that appropriate control parameters may be problem dependent. This requires

experimentation on the part of the user, and in this paper some rules-of-thumb were



followed regardingpopulationsize,crossoverprobabilityandmutationprobability. Other

valuesfor theseparametersmayprovidebetterresultsandshorterrun time that thoseused

in thisexercise.

Geneticalgorithmssearchusinga guidedprobabilisticsearchratherthan_adient methods.

Becauseof this, GA do notcompletethesearchat localoptimaandcansolveproblemsthat

cannot be attempted using c',.flculus-basedmethods. However, since no _adient

information is associatedwith the results, genetic algorithms have no guaranteeof

convergence.In thissense,theability to guaranteeanoptimalpoint is tradedfor theability,

to searchthelarge,complexdomainof thedesignproblem.

The geneticalgorithmalsocanencounterpremature convergence 4, a condition where the

population of strings has become uniform in character, but is lacking near-optimal

individuals. In this condition, the best individual no longer improves in fitness from one

generation to the next. This can occur as either the result of the problem statement being

difficult for the GA to approach (GA-hard) 11, or as the result of sampling error, especially

in the initial randomly generated population. The concept of premature convergence causes

different design results to be generated for different samples of the design space. One

author has stated, "Traditional genetic algorithms, though robust, are generally not the most

successful optimization algorithms on any particular domain. ''12 Figure 2 presents a

graphical representation of this concept. On a given, narrow problem domain, calculus-

based methods are highly effective; however, when the problem domain is expanded, the

genetic algorithm shows better performance. In the work to be discussed in this paper, the

addition of discrete and integer variables to the design problem expands the domain

typically associated with rotor design optimization problems.



In spiteof the difficultiesassociatedwith geneticalgorithms,the abilitiesof the codeto be

usedin a conceptualdesigntool canstill producemeaningfulresults. The addition of the

discrete variablesrepresentingairfoil sectionsinto the designproblem has increasedthe

domainof the problemfrom that typicallyattemptedby traditionalnumericaloptimization

schemes.The effectiveness of the genetic algorithm as an optimizer may be less than that of

a calculus-based method, but considered as a search technique, the genetic algorithm is

quite efficient. The genetic algorithm narrows the vast design space to more interesting

areas, which is the goal of conceptual design.
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The GA Rotor Design Code

The rotor system design problem addressed in this research can be described in the manner

of an optimization problem. Using a set of design variables, an objective function is to be

minimized subject to certain constraints. Design variables used in this exercise are airfoil

section, number of blades, solidity, finear twist, tip speed, disk loading, and taper ratio. A

global function, combining the weight of the rotor system and the power required of the



rotor system,forms themulti-objectivegoal function. To keep the scopeof the problem

reasonablysimple,power isminimizedfor thehovercondition. Weightof therotor system

consistsof thestructuralweight of therotor blades,hubandhinge,drive systemandflight

controlsbasedonstatisticalrelations.

This GA-basedrotor designcode containsthe threebasicoperatorsof genetic'algorithms:

selection, crossover and mutation. However, as in other GA applications, variations of

these operators and "higher-order" operators alter the perforrnance of the GA to make it

better suited to the problem at hand.

To use the genetic 'algorithm, the design variables are coded in binary strings. For example,

in this exercise, the air-foil section variable represents eight discrete ",fir'foit sections and is

coded into a three-bit binary string. The integer number of bl',_les follows similar coding.

Table 1 presents the coding of the discrete and integer design variables to the appropriate

binary strings.

Table 1. Discrete and Integer Design

Airfoil Section Binary String

NACA 0012 000

NACA 0015 001

NACA 23012 010

NACA 23015 011

NACA 63A012 100

NACA 63A015 101

Vertol VR-7 110

Vertol VR-8 111

Variable-to-Binary, String Mapping

Number of Binary String

Blades

2 000

3 001

4 010

5 011

6 100

7 101

8 i10

9 111

To keep the problem small in scope, all of the continuous design variables used were

mapped to binary strings of fairly short length. Table 2 contains a summary of the

continuous variable-to-string mappings. The continuous design variables in this case have
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large values of resolution, To make the variables more "continuous" longer binary strings

could easily be used, thereby improving the resolution. For example, improving the

resolution of the linear twist variable to 0.5 degrees for the same range of values requires a

five bit string. If the problem warranted a resolution of about 0.001 degrees for linear twist,

a string of 14 bits could be used. This experiment used high tolerance values for design

variables: the resulting short string length makes the code faster to run and easier to debug,

and requires less computer memory for storage of the strings and chromosomes. This

results from a trade-off of short string length versus higher accuracy. The authors feel that

the using a relatively short string [eng-th successfully demonstrates the capability, of GA in

this conceptual design exercise. With this variable-to-string mapping, the binary, string

representing one design point has a total length of 27 bits. Even with this seemingly course

resolution, the mapping translates to a design space of 227 or over 134 million different

designs. In actuality, the entire design space and variables are discretized, but with

appropriate string lengths, variables can be made continuous to within some tolerance.

Table 2. Continuous Design Variable to Binary, StringMapping Parameters

Variable (units) Minimum Maximum Resolution String

Value Value Length

Solidity 0.050 0.125 0.005 4 bits

Linear Twist (degrees) - 16 - 1 1 4 bits

Tip Speed (ft/sec) 625 780 5 5 bits

Disk Loading (lb/ft 2) 3.0 18.5 0.5 5 bits

Blade Taper Ratio 0.3 1.0 0.1 3 bits

The chromosome of an individual design is built up from the strings relating to the design

parameters. An example design for this problem using a NACA 0015 airfoil (represented by

the string "001" as the ftrst three bits of the chromosome), 5 blades (011), a solidity of

0.065 (0011), linear twist of -9 degrees (011 I), tip speed of 680 ft/sec (01011), disk loading



of 5.5 lb/ft2 (00101), and a taper ratio of 0.8 (101) will be representedby the 27-bit

concatenatedstring:

"001011001101110101100101101"

For the multi-objective function in the rotor system designproblem, a single global

objective function with a quadraticpenaltyfunction providesthe meansto evaluate the

fimessof therotor systemdesignsfor minimumpowerandweight.

f ( / t2- W
A1 P Pmin / 2

Pmin ) + A2 - Wmin
w min .

+£Ci (max[O,gi (x)]) 2

i

To set up the global function, the genetic algorithm was first run to find the minimum,

unconstrained power solution for the rotor system. This provides the Pmin value in the

following equation. Next, the unconstrained minimum weight solution was found, resulting

in the Wmi n value. Because these solutions are found without constraints, these rotor

designs may not be practical designs: they only provide a scaling factor for the global

function. Coefficients were chosen for A 1, A 2 and C i based mostly on observation. It was

intended that the power and weight portions of the equation contribute equal amounts to

the fitness value. Coefficients for the penalty function were also chosen to reflect the

acceptability of a slightly violated constraint; a larger constant results in a higher penalty for

a slight violation.

The single global objective function method to evaluate fitness was chosen for its simplicity

in developing the GA code. Several researchers have found that Pareto optimality criteria



using vector-evaluated 13 or niched 14 genetic algorithms have been quite successful for

multiobjective optimization, but these approaches require some difficult modifications to the

genetic algorithm ccxte.

A "tournament" selection method is used to choose the appropriate individuals to contribute

to the next generation. In this selection approach, two individuals are selected without

replacement from the current population. These individuals are evaluated for fitness, and

the individual with the better fimess of this pair survives for the crossover step. A second

pair is picked, evaluated and one individual is selected and mated with the individual from

the previous pair. This continues until the new population is filled. Figure 3 provides a

flow chart describing the tournament selection process. This method possesses several

advantages over the more traditional roulette wheel or rank order selection methods 4. As

compared with other section methods which rely on the maximum numerical value for

fimess to be considered the best fitness, the tournament selection method allows for a

minimum fimess value to be considered the best fitness. This more naturally follows the

intent of minimizing power and weight Additionally, this toummnent selection directly

compares two individuals at a time, rather than comparing the relative fitness of one

individu',fl against the entire population; this avoids problems with fitness scaling.

Unfortunately, even with fimess scaling problems avoided, the genetic algorithm can still

encounter premature convergence. To help avoid this, an elitist tournament selection was

used, in which the best individual from the current generation is kept unchanged and

replaces the worst member of the next generation.

With the elitist tournament selection method helping to stall premature convergence, the

GA still encounters situations where the current population cannot improve the best

individual. When the algorithm begins to show signs of premature convergence in this
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Figure 3. Tournament Selection Process

work, e.g., no improvement in the best individual after five generations, a G-bit

improvement 4 scheme is used. The G-bit improvement is a gadient-like bitwise

improvement approach. For the current best individual in the population, the G-bit

improvement routine varies one bit at a time in the chromosome. The single-bit change

producing the best fitness string is saved, and entered into the population, replacing the

current generation's poorest member. This G-bit improvement forces a mutation upon the

best individual to try to introduce new schema to the population that are needed to improve

the best individual.

Attempts to avoid premature convergence also act to lessen the effectiveness of the global

search properties of the genetic algorithm. To assist the global search, the population size



is increased to 100 members even though the string size would suggest that a smaller

population would be adequate 4. For the increased population size, the random sample of

the search space taken by the initial population is more diverse, and therefore, more likely to

contain high quality schema that will lead to a good solution. Based on the population size

of 100 individuals, the crossover probability was set at 70%, meaning that each pair of

strings selected for mating have a 70% chance of exchan#ng information and a 30% chance

of the offspring being "clones" of the parents, and the mutation probability was set at 0.1%.

meaning that a bit in the string has a 0.1% chance of being changed from its current value of

"1" or "0" to the opposite value.

FITNESS ANALYSIS METHODOLOGY

For this study of genetic algorithms, the best rotor system combines a minimum amount of

required power and a minimum system weight. Because genetic algorithms require a fairly

large number of fitness evaluations during their operation, simple analysis techniques with a

reasonable amount of accuracy and low computational cost provide the means for

evaluating the rotor systems.

Analysis Methods

To determine the power required in hover, a combined blade element/momentum code, as

suggested by Prouty 15, calculates the power needed for a specified thrust. The lift curve

slope, zero-lift angle of attack and a drag coefficient look-up table relating drag coefficient

to angle of attack provide aerodynamic characteristics of the airfoil section. All airfoil data

for this work was taken from Dadone 16 to provide a single-source reference in order to

maintain consistency. Empirical weight equations, as derived by Shinn 17, provide a method

for evaluating rotor system weight. Although a rigorous structural analysis of the rotor



system would furnish a more accurate weight estimate, this statistical, parametric analysis

was utilized in order to keep computation time as low as possible.

A penalty method approach enforces constraints on the design space which keep the rotor

designs realistic and feasible. One such constraint, that forbidding any stalled rotor sections

in hover, is handled in this way. Because of the fairly simple representation of the airfoil

section aerodynamic properties in the blade element method, a solution which provides

enough thrust for hover may require angles of attack that exceed the airfoil's stall angle. If

an angle is required which exceeds that for stall, the fitness function is pen',dized. For

forward flight, the 'advancing blade at 90 degrees azimuth position experiences the highest

local velocities. If any elements on this blade encounter a local Mach number which

exceeds the drag divergence Mach number of the airfoil, a penalty is added to the fitness

function for each element that encounters this condition.

Because the weight analysis for the rotor systems is based on a statistical model of existing

rotor systems, the weight equations have difficulty when required to predict the weight of

infeasible rotor designs, similar to the problems in existing design methods. In particular,

the blades for a rotor system being evaluated may have an aspect ratio that is physically

improbable, but the weight equations calculate a weight for this blade without regard to its

improbability. Concerns about structural and dynamic response of the blades We included

in a constraint on the blade aspect ratio to account for this problem. The aspect ratios of

blades for 26 different helicopters were used to find a mean and standard deviation for the

aspect ratio of a "typical" helicopter blade with the assumption that the blade aspect ratios

follow a normal distribution. The constraint is imposed if the blade design has an aspect

ratio which exceeds 23.1, the mean value plus two standard deviations (It + 2 or) from the



database.This limit represents98% of therotor bladesactuallybuilt and flying, implying

thatthesebladesmeetstructuralanddynamicrequirements.

A maneuvercapability,for both steady(no loss in speedor altitude) and transient(with

change in speedand/or altitude) turns must be maintained. The steady turn analysis

evaluates the retreating blade at an azimuth of 270 degrees. The portion of the blade

outboard of the reverse flow region must produce thrust equal to the total thrust of the

rotor system divided by the number of blades. If the blade cannot meet this requirement, a

pen',dty is assessed. Because the transient maneuver involves dynamic blade stall and other

complex issues, the analysis makes use of an empirical curve relating advance ratio to blade

loading. At a given advance ratio and required rotor thrust, this curve provides a rnmximum

available blade loading for comparison with the required blade loading. If the required

blade loading exceeds the maximum available blade loading, the fitness is penalized.

Validation of Fitness Analysis

In conceptual design, between 10 and 15% an',.dysis error is generally considered

acceptable 18. As the design process progresses, the allowable error decreases, and more

sophisticated analysis techniques are required. For the application considered here. analyses

with 10 to 15% error are appropriate. As discussed previously, reduced computational time

motivated the methods used to calculate the fimess of a rotor system. Evaluating an

existing rotor with the fitness evaluation routines and comparing known characteristics to

calculated characteristics checks the validity of these methods. To provide this comparison,

the fight, single turbine MD 500E helicopter was used as the baseline rotor system.

The routines used to calculate the fitness value were decoupled from the genetic algorithm

to calculate a fitness for the MD 500 rotor system. This rotor has simple planform



geometryand usestheNACA 0015airfoil section. A descriptionof therotor canbefound

in the appendicesof Reference15. This aircraftweighs3000lb, and is evaluatedin hover

for sea-level,standardatmosphericconditions.Usingthebladeelementcode,thepredicted

power to hover is286 hp, andtheweightof therotor system(blades,hub andhinge,drive

system,and flight controls) is 373 lb. This predictedpowerdiffers by lessthan5% from

flight test data for hover out-of-groundeffect. The predictedweight differs by lessthan

3%. Theselevelsof erroraremorethanacceptablefor theconceptualphaseof design.

Becausethe MD 500Ewaschosenasthebaselineto evaluatethe fitnessmethodology,it is

importantto note that therotor systemof theMD 500Eviolatestheaspectratio constraint

assignedto the designproblem. The500Ebladeaspectratioof 23.4just exceedsthe limit

imposedof 23.1. Becausethe MD 500 violatesthis but is actually a successfullyflying

rotor system,a "weak"constantis multipliedto the penaltyto allow bladeslike the 500's,

which barelyviolatethis constraint,to beacceptable.Usingthe fitnessevaluationfor the

actualMD 500Erotor,thefitnessvalueis 0.4872,thepenaltyfor exceedingtheaspectratio

constraintcontributesonly 0.0038to thisoverall fitness. No otherconstraintsareviolated

by the MD 500 rotor.

"DESIGN" OF AN EXISTING ROTOR SYSTEM

The MD 500E's design requirements were used to generate a rotor system using the GA-

based code. The rotor system is to provide a combination of minimum power to hover and

minimum system weight for an aircraft with a 3000 lb gross weight, 5.5 ft 2 of flat plate drag

area, and an assumed hover download of 5%. The aircraft must be capable of a maximum

forward speed of 135 knots, and must perform a steady maneuver (no change in altitude or

flight speed) of 1.1 g at 70 knots and perform a transient maneuver (allowing change in

altitude and/or flight speed) of 1.5 g initiated at 120 knots.



To solve this designproblem, the geneticalgorithm-basedcode generatednine designs,

eachtime usinga different initial setof 100randomlyselecteddesignpoints. Eachof the

ninedifferent runsproducesa slightlydifferent solution. A summary of the results forms

Table 3, which also includes the MD 500E rotor system for comparison. The "GA seed" is

simply a starting point for the initial random selection process.

Table 3. Genetic Algorithm Based Design of the MD 500E Rotor Svstem

Airfoil No. of Linear Tip Disk Taper

GA seed Section Blades Solidity Twist Speed Loading Ratio

(deg) ( ft/s ) ( lb/ft 2)

MD 500E NACA 0015 5 0.068 -9 680 5.48 1.0

9 Vertol VR-8 5 0.070 -6 690 5.0 0.5

9353 Vertol VR-8 5 (/.075 -7 700 5.5 0.5

11939 Vertol VR-8 4 0.055 -6 685 5.0 0.9

5139 Vertol VR-7 4 0.055 -6 670 5.0 0.5

12934 Vertol VR-8 4 0.060 -6 705 5.0 0.6

566 Vertol VR-7 3 0.050 -9 665 5.0 0.7

4465 Vertol VR-8 5 0.070 -8 645 5.5 1.0

10270 Vertol VR-8 4 0.055 -6 730 4.5 0.5

12333 Vertol VR-7 5 0.070 -6 630 5.5 0.5

All of these rotor system designs are different from each other and from the actual MD

500E. It is important to see that the GA-generated rotor designs are actually fairly close

together in the available design space, and that "all have reasonable parameters. Because of

the known effects of premature convergence and the lack of a guarantee of convergence at

an optimum, these differences should be expected.

To display the search process that the genetic algorithm uses, Figure 4 presents the

planform for several interim designs in the search using the initial seed value of 9. The MD

500E rotor system planform is included for comparison. The rotor system for generation

50 is the final design listed in the above table; all runs were continued for 50 generations,

even though several runs had reached a convergent-like point before the 50th generation



wasreached.

asthesearchspaceis rapidlynarrowed.

Most of the majorchangesto therotor systemoccur in the first generations

Generation1 Generation3 Generation7

Generation10 Generation50 MD 500ERotor

Figure4. PlanformEvolutionof theExistingRotorDesignProblem

Results for Existing Rotor System Design

The objective values for the rotors produced by the GA-based code are compared with the

actual 500E rotor system in Table 4. Fitness values for all of the rotor systems are shown

along with the power and weight requirements. All of the new rotors have a lower fitness

value than the existing rotor system, suggesting that they are better designs according to the

criteria given in this problem. The rotors generated by the genetic algorithm all have lower

power requirements than the actual MD 500E rotor. The rotor system weights are

generally fairly close to the current rotor weight; some are slightly higher, others are slightly

lower. As discussed previously, the MD 500E rotor blades violate the aspect ratio

constraint, but this is only "slightly" violated and has a small effect on the fitness value.

Other rotors with violated constraints have similar situations, and the effect of the constraint

violation on the fitness value is very small, as seen in the last column of Table 4.



Table 4. Rotor System Comparison

Power System Fitness

GA seed Required Weight Value Violated Constraints

(hp) (lb.) (fitness contribution)

MD 500E 286 373 0.4872 aspect ratio (0.0038)

9 249 397 0.3388 none

9353 260 383 0.3682 steady turn (0.0036)

11939 255 356 0.2987 none

5139 252 355 0.2816 none

12934 252 373 0.3112 steady turn (0.0013)

566 256 350 0.2925 steady turn (0.0005)

4465 265 370 0.3630 none

10270 238 384 0,2835 Mach number, steady turn (0.0038)

12333 262 370 0.3469 none

The use of different design parameters accounts for some of the differences between the

generated designs and the existing desi_. Allowing the Vertol VR-7 and VR-8 ",firfoils.

which are specifically designed for low power, to be used as design variables leads to lower

power designs. Similarly, taper ratio was probably constrained for manufacture in the MD

500E. Because of the rather complex nature of the rotor design problem, the genetic

algorithm did reach some prematurely convergent conditions, resulting in the nine different

blade designs. All of the resulting designs can be considered good designs, especially when

compared with the existing rotor system. Obviously, some of the generated designs are

better than others, and because of the lack of a guarantee on optimal convergence, this

condition is comparable to (though not the same as) a calculus based method finding a local

minimum. The important difference here is that the genetic algorithm does not find a local

optimum; rather it progresses toward the global optimum until a convergent-like state is

reached. This behavior supports the claim that these generated rotor systems are good

designs, but does not allow the claim that any of these is the actual globally-optimal

solution.





In this exercise the nature of the fitness function is rather important in affecting the

solutions generated. The fitness function used in this problem placed a higher emphasis on

reducing the power required to hover than on reducing rotor system weight. The effect of

this is seen in the resulting designs always having a lower power requirement than the

existing rotor system, but also having, in some instances, a higher weight than the existing

system.

DESIGN OF A NEW ROTOR SYSTEM

To mimic one of the steps taken in the design of a new rotorcraft, the GA code was used to

generate a rotor system with no existing comparison point. For this part of the exercise the

rotor system for a notional 20.000-1b attack helicopter was designed. The aircraft was

assumed to have 45.0 ft 2 of equivalent fiat plate drag area and a hover download of 5% of

the gross weight. Performance constraints imposed on the rotor included a maximum cruise

speed of 185 knots, the ability to perform a steady turn of 1.25g at 70 knots (to

approximate minimum power velocity,), and the ability to perform a 2.0g transient turn

initiated at 165 knots. Constraints were also imposed on the blade stall in hover and blade

aspect ratio. Because this is meant to be an attack helicopter, a ballistic tolerance constraint

was imposed; the mean aerodynamic chord of the blade must be greater than or equal to 18

in.

The GA-based code created nine different rotor designs using nine different initial random

seeds. Table 5 displays the resulting designs. As with the MD 500E rotor design exercise,

the different designs are in the same neighborhood of the design space. All rotors have

between five and seven blades, and most have the Vertol VR-8 airfoil section. Other design

variables have high levels of similarity.



Table 5.

GA Seed

Genetic Algorithm-Based Design of the Attack Helicopter Rotor System

Airfoil No. of Linear Tip Disk Taper

Section Blades Solidity Twist Speed Loading Ratio

(deg) fit/s) (Ib/ft 2)

3406 Vertol VR-8 6 0.090 -8 655 5.0 0.7

4577 Vertol VR-8 6 0.085 -7 665 5.0 0.7

9330 Vertol VR-8 7 0.100 -6 665 5.0 0.5

14172 Vertol VR-8 6 0.085 -6 635 4.5 0.7

2612 NACA 63A012 6 0.090 -10 655 5.0 0.6

3677 Vertol VR-8 5 0.070 -8 660 4.0 0.8

706 Vertol VR-8 5 0.080 -4 640 4.5 0.7

12510 Vertol VR-8 5 0.070 -4 645 4.0 0.7

6813 Vertol VR-8 5 0,080 -8 670 5.0 0.8

Figure 5 displays the planforms for several intermediate designs found during the run using

the seed value 3677. As with the existing design problem, most major changes are made in

the first few generations of the design run.

@
Generation 1 Generation 3

Generation 5 Generation 10 Generation 50

Figure 5. Planform Evolution of the New Rotor System Design Problem



Results for New Rotor System Design

The fimess values, power required and system weights for the attack helicopter rotor

designs are compared in Table 6. While the fimess v',.flues for ",allthe designs are around

0.35, the power and weight values actually differ from each other. Because a multi-

objective global function was used to evaluate fitness, a low-power rotor with a higher

system weight will have the same fimess as a higher-power, low-weight rotor system. In

this particular exercise, none of the resulting rotors violated any of the constraints imposed

upon the design space.

Table 6. Attack Helicopter Rotor System Comparison

Power System Fitness

GA seed Required Weight Value

(hp) (Ib)

Violated Constraints

3406 1830 4718 0.3586 none

4577 1835 4561 0.3372 none

9330 1815 4910 0.3824 none

14172 1740 4995 0.3601 none

2612 1879 4761 0.3934 none

3677 1666 5013 0.3298 none

706 1760 4943 0.3604 none

12510 1659 5033 0.3344 none

6813 1847 4509 0.3362 none

The difference in the designs can be attributed to the occurrence of premature convergence.

Again, if the genetic algorithm is viewed strictly as an optimization technique, this

premature convergence is undesirable, but viewed as a high-speed global search technique,

these designs axe all reasonable. The search of the genetic algorithms approaches the global

optimum, so all of these designs may be considered good but not optimal designs.



FURTHER APPLICATIONS AND RESEARCH

This paper has demonstrated the potential for genetic algorithms in conceptual design of

rotor systems. The work has, however, generated many questions about genetic "algorithms

as well as having demonstrated possibilities for GA application in conceptual design. There

are several areas where this work could be elaborated, the objectives modified, and the

application of GA extended to. larger design problems.

Several areas exist for extensions of this work. Multiobjective optimization supplies a

significant way to improve designs. In the context of genetic algorithms, the multiobjective

function of low power and tow weight in this discussion could be evaluated using different

global functions from that used here. The tournament selection could be made a

multiobjective tournament by having each branch represent each criteria. Other researchers

have applied Pareto optimality concepts to the genetic algorithm; concepts of niching and

sharing have aJso been investigated. ReJative performance and results of these methods

should be evaluated and compared for using multicriteria fimess in the genetic algorithm for

conceptual design.

Other objective functions for the rotor system could also be included in the conceptual

design process. Low noise requirements, minimum power at several flight conditions,

minimum control load requirements, reduced vibration and sh',fft load transfer could all be

used as objective functions, either alone or combined in some multiobjective approach.

Typically, many of these features of rotor systems are addressed by rules-of-thumb early in

the design process, or are not even addressed until later in the process when changes to the

design become more difficult and costly.



Becauseof the simplicityof the demonsu'ationpresentedin this paper,someaccuracyin

anNvsiswasknowinglysacrificed. A more rigorousstructuralanalysiswould increasethe

confidencein accountingfor the rotor structuralanddynamicresponse.Weightprediction

using a volume inte_ation approachmay 'alsoreduceuncertaintyassociatedwith using

parametricweightequations.

The two demonstrationsof rotor systemdesign in this paper exhibited occurrenceof

prematureconvergence,where the geneticalgorithm reacheda point that could not be

improvedupon, but is not necessarilytheglobaloptimum. As suggestedbyGoldberg4, as

well asothers,a hybridmethodfor rotorsystemdesigncould beemployed. In one scenario

for a hybrid method,the geneticalgorithmfirst generatesone or more conceptualrotor

systemdesigns. Thenusing more rigorousnumericaloptimization techniquesand more

accurateanalysismethods,thepreliminarydesignof the rotor could bedevelopedusingthe

geneticalgorithmresult asthe startingpoint. Typically, thesenumericaloptimizationsare

fairly cosily. Reference19 reports CPU times as high as 18 hr on a DEC VAX system,

using a known rotor system as the initial design point. The genetic algorithm based code

used in this paper ta.kes about 10 min to run on an PC machine with a 486 processor.

Because the numerical optimization routines, such as CONMIN, produce results that can

vary widely with the initial design point, it seems that for a new rotor system, where no

physical example exists, the GA-based code could provide quality starting points for the

more rigorous design optimization procedures. This would reduce computational time

which may be required when a poor initial design point is chosen.

Finally, it appears that using genetic algorithms can be applied to aircraft conceptual design.

In this example, only one discrete variable was used in the problem statement. Using

configuration selections as discrete variables, the GA-based code can search a still wider



designspacethan examinedin this paper. Thesediscretevariablescould include rotor

configurations,asdiscussedearlier in the paper,conceivablythe samecould be done for

rotorcraftconfigurations;onevariablecouldrepresentahelicopter,a tilt-rotor, a tilt-wing, a

stoppedrotor, or a lift jet, for example. Incorporatingengineselectionasadiscretevariable

could allow a desibmerto choosefrom "off-the-shelf' powerplants,and use an integer

designvariableto choosethe numberof the powerptants. It appearsthat there is great

potential for geneticalgorithmsin the conceptualdesignof entire aircraft, not just rotor

systems.

CONCLUSIONS

The developmentof a design code that incorporatesgenetic algorithmshas potential

capabilityto performbothselectionandoptimizationtasksin theconceptualdesignof rotor

systems.The work in this paperdemonstratesthefeasibilityof incorporatingGA into the

conceptualdesignprocessof a rotor system. Additionally, the capabilityof the code to

evaluatethe multiobjectivefunction of low power and low weight is demonstrated.With

this potential demonstrated,the conceptualdesignprocessfor entire rotorcraft may be

greatlyenhancedin both speed and scope with the application of genetic algorithms to this

process.
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