5,724 research outputs found
The valuation of clean spread options: linking electricity, emissions and fuels
The purpose of the paper is to present a new pricing method for clean spread options, and to illustrate its main features on a set of numerical examples produced by a dedicated computer code. The novelty of the approach is embedded in the use of a structural model as opposed to reduced-form models which fail to capture properly the fundamental dependencies between the economic factors entering the production process
Time series prediction via aggregation : an oracle bound including numerical cost
We address the problem of forecasting a time series meeting the Causal
Bernoulli Shift model, using a parametric set of predictors. The aggregation
technique provides a predictor with well established and quite satisfying
theoretical properties expressed by an oracle inequality for the prediction
risk. The numerical computation of the aggregated predictor usually relies on a
Markov chain Monte Carlo method whose convergence should be evaluated. In
particular, it is crucial to bound the number of simulations needed to achieve
a numerical precision of the same order as the prediction risk. In this
direction we present a fairly general result which can be seen as an oracle
inequality including the numerical cost of the predictor computation. The
numerical cost appears by letting the oracle inequality depend on the number of
simulations required in the Monte Carlo approximation. Some numerical
experiments are then carried out to support our findings
Microwave dielectric study of spin-Peierls and charge ordering transitions in (TMTTF)PF salts
We report a study of the 16.5 GHz dielectric function of hydrogenated and
deuterated organic salts (TMTTF)PF. The temperature behavior of the
dielectric function is consistent with short-range polar order whose relaxation
time decreases rapidly below the charge ordering temperature. If this
transition has more a relaxor character in the hydrogenated salt, charge
ordering is strengthened in the deuterated one where the transition temperature
has increased by more than thirty percent. Anomalies in the dielectric function
are also observed in the spin-Peierls ground state revealing some intricate
lattice effects in a temperature range where both phases coexist. The variation
of the spin-Peierls ordering temperature under magnetic field appears to follow
a mean-field prediction despite the presence of spin-Peierls fluctuations over
a very wide temperature range in the charge ordered state of these salts.Comment: 7 pages, 6 figure
Molecular transport and flow past hard and soft surfaces: Computer simulation of model systems
The properties of polymer liquids on hard and soft substrates are
investigated by molecular dynamics simulation of a coarse-grained bead-spring
model and dynamic single-chain-in-mean-field (SCMF) simulations of a soft,
coarse-grained polymer model. Hard, corrugated substrates are modelled by an
FCC Lennard-Jones solid while polymer brushes are investigated as a
prototypical example of a soft, deformable surface. From the molecular
simulation we extract the coarse-grained parameters that characterise the
equilibrium and flow properties of the liquid in contact with the substrate:
the surface and interface tensions, and the parameters of the hydrodynamic
boundary condition. The so-determined parameters enter a continuum description
like the Stokes equation or the lubrication approximation.Comment: 41 pages, 13 figure
Quantum well engineering in InGaN/GaN core-shell nanorod structures
We report the ability to control relative InN incorporation in InGaN/GaN quantum wells (QWs) grown on the semi-polar and non-polar facets of a core-shell nanorod LED structure by varying the growth conditions. A study of the cathodoluminescence emitted from series of structures with different growth temperatures and pressures for the InGaN QW layer revealed that increasing the growth pressure had the effect of increasing InN incorporation on the semi-polar facets, while increasing the growth temperature improves the uniformity of light emission from the QWs on the non-polar facets.</p
Superconductivity and Antiferromagnetism in Quasi-one-dimensional Organic Conductors
We review the current understanding of superconductivity in the
quasi-one-dimensional organic conductors of the Bechgaard and Fabre salt
families. We discuss the interplay between superconductivity,
antiferromagnetism, and charge-density-wave fluctuations. The connection to
recent experimental observations supporting unconventional pairing and the
possibility of a triplet-spin order parameter for the superconducting phase is
also presented.Comment: (v1) 30 pages, 13 figures; Review article for the 20th anniversary of
high-Tc superconductivity, to appear in J. Low Temp. Phys. (v2) 1 Ref. adde
Random noise in Diffusion Tensor Imaging, its Destructive Impact and Some Corrections
The empirical origin of random noise is described, its influence on DTI variables is illustrated by a review of numerical and in vivo studies supplemented by new simulations investigating high noise levels. A stochastic model of noise propagation is presented to structure noise impact in DTI. Finally, basics of voxelwise and spatial denoising procedures are presented. Recent denoising procedures are reviewed and consequences of the stochastic model for convenient denoising strategies are discussed
Elongation mechanism of the ion shaping of embedded gold nanoparticles under swift heavy ion irradiation
The elongation process under swift heavy ion irradiation (74 MeV Kr ions) of gold NPs, with a diameter in the range 10-30 nm, and embedded in a silica matrix has been investigated by combining experiment and simulation techniques: three-dimensional thermal spike (3DTS), molecular dynamics (MD) and a phenomenological simulation code specially developed for this study. 3DTS simulations evidence the formation of a track in the host matrix and the melting of the NP after the passage of the impinging ion. MD simulations demonstrate that melted NPs have enough time to expand after each ion impact. Our phenomenological simulation relies on the expansion of the melted NP, which flows in the track in silica with modified (lower) density, followed by its recrystallization upon cooling. Finally, the elongation of the spherical NP into a cylindrical one, with a length proportional to its initial size and a width close to the diameter of the track, is the result of the superposition of the independent effects of each expansion/recrystallization process occurring for each ion impact. In agreement with experiment, the simulation shows the gradual elongation of spherical NPs in the ion-beam direction until their widths saturate in the steady state and reach a value close to the track diameter. Moreover, the simulations indicate that the expansion of the gold NP is incomplete at each ion impact.Peer reviewe
- …