280 research outputs found

    Screening and Sufficiency in Multiobjective Decision Problems with Large Alternative Sets

    Get PDF
    Portfolio selection problems with combinatorially-large alternative sets can be impossible to evaluate precisely on a reasonable timescale. When portfolios require complex modeling for performance assessment, prohibitive computational processing times can result. Eliminating a small number of alternatives through an intelligent screening process can greatly reduce the number of alternative combinations, thereby decreasing a problem\u27s evaluation time and cost. A methodology was developed for the class of hierarchical portfolio selection problems in which multiple objectives are all judged on the same sub-objectives. First, a novel capability-based alternative screening process was devised to identify and remove poor alternatives, thereby reducing the number of portfolios. Then, a performance-based portfolio screening process was explored to estimate portfolio sufficiency according to the performance requirements of the decision maker. Following the establishment of a set of sufficient portfolios, the analyst can employ higher resolution post-analysis methods to choose a final solution. Finally, the methodology was applied to a portfolio selection problem in which the United States Strategic Command attempts to select an ideal mix of intelligence, surveillance, and reconnaissance assets. After deconstructing the actual objective hierarchy, a set of representative alternatives were evaluated and a variety of screening procedures were applied to demonstrate significant reduction in the number of possible portfolios

    Intergalactic Globular Clusters

    Get PDF
    We confirm and extend our previous detection of a population of intergalactic globular clusters in Abell 1185, and report the first discovery of an intergalactic globular cluster in the nearby Virgo cluster of galaxies. The numbers, colors and luminosities of these objects can place constraints on their origin, which in turn may yield new insights to the evolution of galaxies in dense environments.Comment: 2 pages, no figures. Talk presented at JD6, IAU General Assembly XXV, Sydney, Australia, July 2003, to appear in Highlights of Astronomy, Vol. 1

    Patient Perspectives on Medication Assisted Therapy in Vermont

    Get PDF
    Introduction. Medication-Assisted Therapy (MAT) for opioid addiction has dramatically increased in Vermont, supported by a novel statewide system that integrates specialty treatment centers ( Hubs ) with primary care office-based opioid therapy ( Spokes ). In 2010, Vermont had the highest per capita buprenorphine use in the US. Previous studies of patient perspectives of MAT have identified social barriers, rigid program rules, and concerns about withdrawal and relapse as common causes of treatment failure. Our goal was to elicit patient perspectives on barriers and enablers of successful MAT to further inform system refinement. Methods. An interview guide was developed based on previous literature as well as discussions with program leadership, staff and clinicians, and community stakeholders. Responses were organized using thematic content analysis with consensus across seven interviewers and two analysts. The interviews were conducted with 44 patients enrolled in MAT at two Hub sites in Burlington, VT in October 2016. Results. The median age of subjects was 34 years, 34% were employed at least part-time, and 72% were female. Half reported a mental health condition and 20% reported chronic pain. Barriers included transportation (25%), lack of stable housing, and stigma (41%). Enablers included feeling supported (82% felt well-supported; 52% felt supported by healthcare professionals). Subjects expressed high confidence in the treatment system and high self-efficacy for sobriety. Conclusions. Patients in MAT have complex medical, mental health, social, personal, and work lives. A comprehensive system that addresses this wide range of domains is critical to achieving optimal outcomes.https://scholarworks.uvm.edu/comphp_gallery/1245/thumbnail.jp

    Evidence for the Hierarchical Formation of the Galactic Spheroid

    Get PDF
    The possibility that the Galactic spheroid was assembled from numerous chemically-distinct, proto-Galactic fragments is investigated using a Monte-Carlo technique designed to simulate the chemical evolution of the Galaxy in hierarchical formation scenarios which involve no gas dissipation. By comparing the observed and simulated metallicity distributions of Galactic globular clusters and halo field stars, we estimate the level of fragmentation in the collapsing proto-Galaxy. Although the formation process is highly stochastic, the simulations often show good agreement with the observed metallicity distributions, provided the luminosity function of proto-Galactic fragments had a power-law form with exponent ~ -2. While this steep slope is strongly at odds with the presently observed luminosity function of the Local Group, it is in close agreement with the predictions of semi-analytic and numerical models of hierarchical galaxy formation. We discuss a number of possible explanations for this discrepancy. These simulations suggest that the Galactic halo and its globular cluster system were assembled via the accretion and disruption of approximately 1000 metal-poor, proto-Galactic fragments by the dominant Galactic building block: a proto-bulge whose own metal-rich globular clusters system has been preferentially eroded by dynamical processes. We argue that the same process (ie, hierarchical growth involving little gas dissipation) is responsible for the formation of both giant elliptical galaxies and the bulge-halo components of spiral galaxies. (ABRIDGED).Comment: 20 pages, 9 postscript figures. Accepted for publication in the ApJ, April 10 2000 issu

    Dont Mess with Texas: Getting the Lone Star State to Net-Zero by 2050

    Get PDF
    The world is decarbonizing. Many countries, companies, and financial institutions have committed to cutting their emissions. Decarbonization commitments have been issued by: 136 countries including Canada, China, and the UK, at least 16 U.S. states including New York, Louisiana, and Virginia, and a third of the largest 2,000 publicly traded companies in the world, including Apple, Amazon, and Walmart, and numerous Texas companies like ExxonMobil, American and Southwest Airlines, Baker Hughes, and AT&T.1–9 These decarbonizing countries, states, cities, and companies are Texas's energy customers. If Texas ignores the challenge to decarbonize its economy, it may eventually face the more difficult challenge of selling carbon-intensive products to customers around the world who do not want them. We are already seeing this scenario beginning to play out with France canceling a liquified natural gas deal from Texas gas producers and both U.S. and international automakers announcing shifts to electric vehicles. Proactive net-zero emissions strategies might allow Texas to maintain energy leadership and grow the economy within a rapidly decarbonizing global marketplace.Thankfully, Texas is uniquely positioned to lead the world in the transition to a carbon-neutral energy economy. With the second highest Gross State Product in the US, the Texas economy is on par with countries like Canada, Italy, or Brazil. Thus, Texas's decisions have global implications. Texas also has an abundant resource of low-carbon energy sources to harness and a world-class workforce with technical capabilities to implement solutions at a large-scale quickly and safely. Texas has a promising opportunity to lead the world towards a better energy system in a way that provides significant economic benefits to the state by leveraging our renewable resources, energy industry expertise, and strong manufacturing and export markets for clean electricity, fuels, and products. The world is moving, with or without Texas, but it is likely to move faster--and Texas will be more prosperous--if Texans lead the way.There are many ways to fully decarbonize the Texas economy across all sectors by 2050. In this analysis, we present a Business as Usual (BAU) scenario and four possible pathways to Texas achieving state-wide net-zero emissions by 2050. Figure ES-1 provides a visual comparison of scenario conditions

    The Next Generation Virgo Cluster Survey. VI. The Kinematics of Ultra-compact Dwarfs and Globular Clusters in M87

    Get PDF
    The origin of ultra-compact dwarfs (UCDs)--objects larger and more massive than typical globular clusters (GCs), but more compact than typical dwarf galaxies--has been hotly debated in the 15 years since their discovery. Even whether UCDs should be considered galactic in origin, or simply the most extreme GCs, is not yet settled. We present the dynamical properties of 97 spectroscopically confirmed UCDs (rh >~10 pc) and 911 GCs associated with central cD galaxy of the Virgo cluster, M87. Our UCDs, of which 89% have M_star > ~2X10^6 M_sun and 92% are as blue as the classic blue GCs, nearly triple the sample of previous confirmed Virgo UCDs, providing by far the best opportunity for studying the global dynamics of a UCD system. We found that (1) UCDs have a surface number density profile that is shallower than that of the blue GCs in the inner ~ 70 kpc and as steep as that of the red GCs at larger radii; (2) UCDs exhibit a significantly stronger rotation than the GCs, and the blue GCs seem to have a velocity field that is more consistent with that of the surrounding dwarf ellipticals than with that of UCDs; (3) UCDs have a radially increasing orbital anisotropy profile, and are tangentially-biased at radii < ~ 40 kpc and radially-biased further out. In contrast, the blue GCs become more tangentially-biased at larger radii beyond ~ 40 kpc; (4) GCs with M_star > 2X10^6 M_sun have rotational properties indistinguishable from the less massive ones, suggesting that it is the size, instead of mass, that differentiates UCDs from GCs as kinematically distinct populations. We conclude that most UCDs in M87 are not consistent with being merely the most luminous and extended examples of otherwise normal GCs. The radially-biased orbital structure of UCDs at large radii is in general agreement with the "tidally threshed dwarf galaxy" scenario.Comment: 27 pages, 21 figures. To appear in The Astrophysical Journa

    Strong enhancement of drag and dissipation at the weak- to strong- coupling phase transition in a bi-layer system at a total Landau level filling nu=1

    Full text link
    We consider a bi-layer electronic system at a total Landau level filling factor nu =1, and focus on the transition from the regime of weak inter-layer coupling to that of the strongly coupled (1,1,1) phase (or ''quantum Hall ferromagnet''). Making the assumption that in the transition region the system is made of puddles of the (1,1,1) phase embedded in a bulk of the weakly coupled state, we show that the transition is accompanied by a strong increase in longitudinal Coulomb drag, that reaches a maximum of approximately h/2e2h/2e^{2}. In that regime the longitudinal drag is increased with decreasing temperature.Comment: four pages, one included figur

    Overview of the Kepler Science Processing Pipeline

    Full text link
    The Kepler Mission Science Operations Center (SOC) performs several critical functions including managing the ~156,000 target stars, associated target tables, science data compression tables and parameters, as well as processing the raw photometric data downlinked from the spacecraft each month. The raw data are first calibrated at the pixel level to correct for bias, smear induced by a shutterless readout, and other detector and electronic effects. A background sky flux is estimated from ~4500 pixels on each of the 84 CCD readout channels, and simple aperture photometry is performed on an optimal aperture for each star. Ancillary engineering data and diagnostic information extracted from the science data are used to remove systematic errors in the flux time series that are correlated with these data prior to searching for signatures of transiting planets with a wavelet-based, adaptive matched filter. Stars with signatures exceeding 7.1 sigma are subjected to a suite of statistical tests including an examination of each star's centroid motion to reject false positives caused by background eclipsing binaries. Physical parameters for each planetary candidate are fitted to the transit signature, and signatures of additional transiting planets are sought in the residual light curve. The pipeline is operational, finding planetary signatures and providing robust eliminations of false positives.Comment: 8 pages, 3 figure
    • …
    corecore