29 research outputs found

    Multidimensional Characterization and Differentiation of Neurons in the Anteroventral Cochlear Nucleus

    Get PDF
    Multiple parallel auditory pathways ascend from the cochlear nucleus. It is generally accepted that the origin of these pathways are distinct groups of neurons differing in their anatomical and physiological properties. In extracellular in vivo recordings these neurons are typically classified on the basis of their peri-stimulus time histogram. In the present study we reconsider the question of classification of neurons in the anteroventral cochlear nucleus (AVCN) by taking a wider range of response properties into account. The study aims at a better understanding of the AVCN's functional organization and its significance as the source of different ascending auditory pathways. The analyses were based on 223 neurons recorded in the AVCN of the Mongolian gerbil. The range of analysed parameters encompassed spontaneous activity, frequency coding, sound level coding, as well as temporal coding. In order to categorize the unit sample without any presumptions as to the relevance of certain response parameters, hierarchical cluster analysis and additional principal component analysis were employed which both allow a classification on the basis of a multitude of parameters simultaneously. Even with the presently considered wider range of parameters, high number of neurons and more advanced analytical methods, no clear boundaries emerged which would separate the neurons based on their physiology. At the current resolution of the analysis, we therefore conclude that the AVCN units more likely constitute a multi-dimensional continuum with different physiological characteristics manifested at different poles. However, more complex stimuli could be useful to uncover physiological differences in future studies

    Acoustic trauma slows AMPAR-mediated EPSCs in the auditory brainstem, reducing GluA4 subunit expression as a mechanism to rescue binaural function

    Get PDF
    Damaging levels of sound (acoustic trauma, AT) diminish peripheral synapses, but what is the impact on the central auditory pathway? Developmental maturation of synaptic function and hearing were characterized in the mouse lateral superior olive (LSO) from postnatal day 7 (P7) to P96 using voltage-clamp and auditory brainstem responses. IPSCs and EPSCs show rapid acceleration during development, so that decay kinetics converge to similar sub-millisecond time-constants (τ, 0.87 ± 0.11 and 0.77 ± 0.08 ms, respectively) in adult mice. This correlated with LSO mRNA levels for glycinergic and glutamatergic ionotropic receptor subunits, confirming a switch from Glyα2 to Glyα1 for IPSCs and increased expression of GluA3 and GluA4 subunits for EPSCs. The NMDA receptor (NMDAR)-EPSC decay τ accelerated from >40 ms in prehearing animals to 2.6 ± 0.4 ms in adults, as GluN2C expression increased. In vivo induction of AT at around P20 disrupted IPSC and EPSC integration in the LSO, so that 1 week later the AMPA receptor (AMPAR)-EPSC decay was slowed and mRNA for GluA1 increased while GluA4 decreased. In contrast, GlyR IPSC and NMDAR-EPSC decay times were unchanged. Computational modelling confirmed that matched IPSC and EPSC kinetics are required to generate mature interaural level difference functions, and that longer-lasting EPSCs compensate to maintain binaural function with raised auditory thresholds after AT. We conclude that LSO excitatory and inhibitory synaptic drive matures to identical time-courses, that AT changes synaptic AMPARs by expression of subunits with slow kinetics (which recover over 2 months) and that loud sounds reversibly modify excitatory synapses in the brain, changing synaptic function for several weeks after exposure

    Low-threshold potassium currents stabilize IID-sensitivity in the inferior colliculus

    Get PDF
    The inferior colliculus (IC) is a midbrain nucleus that exhibits sensitivity to differences in interaural time and intensity (ITDs and IIDs) and integrates information from the auditory brainstem to provide an unambiguous representation of sound location across the azimuth. Further upstream, in the lateral superior olive (LSO), absence of low-threshold potassium currents in Kcna1[superscript −/−] mice interfered with response onset timing and restricted IID-sensitivity to the hemifield of the excitatory ear. Assuming the IID-sensitivity in the IC to be at least partly inherited from LSO neurons, the IC IID-encoding was compared between wild-type (Kcna1[superscript +/+]) and Kcna1[superscript −/−] mice. We asked whether the effect observed in the Kcna1[superscript −/−] LSO is (1) simply propagated into the IC, (2) is enhanced and amplified or, (3) alternatively, is compensated and so no longer detectable. Our results show that general IC response properties as well as the distribution of IID-functions were comparable in Kcna1[superscript −/−] and Kcna1[superscript+/+] mice. In agreement with the literature IC neurons exhibited a higher level-invariance of IID-sensitivity compared to LSO neurons. However, manipulating the timing between the inputs of the two ears caused significantly larger shifts of IID-sensitivity in Kcna1[superscript −/−] mice, whereas in the wild-type IC the IID functions were stable and less sensitive to changes of the temporal relationship between the binaural inputs. We conclude that the IC not only inherits IID-sensitivity from the LSO, but that the convergence with other, non-olivary inputs in the wild-type IC acts to quality-control, consolidate, and stabilize IID representation; this necessary integration of inputs is impaired in the absence of the low-threshold potassium currents mediated by Kv1.1

    The Medial Nucleus of the Trapezoid Body in the Gerbil Is More Than a Relay: Comparison of Pre- and Postsynaptic Activity

    No full text
    The medial nucleus of the trapezoid body (MNTB) plays an important role in the processing of interaural intensity differences, a feature that is critical for the localization of sound sources. It is generally believed that the MNTB functions primarily as a passive relay in converting excitatory input originating from the contralateral cochlear nucleus (CN) into an inhibitory input to the ipsilateral lateral superior olive. However, studies showing that the MNTB itself is also the target of inhibitory input suggest that the MNTB may serve more than a sign-converting function. To examine the fidelity of signal transmission at the CN–MNTB synapse, presynaptic calyceal potentials ("prepotentials"), reflecting the excitatory input to the MNTB neuron, and postsynaptic action potentials were simultaneously monitored with the same electrode during in vivo extracellular recordings from the gerbil's MNTB. Presynaptic activity differed from postsynaptic activity in several respects: (1) Spontaneous and sound-evoked discharge rates were greater presynaptically than postsynaptically. (2) Frequency tuning was sharper postsynaptically than presynaptically. (3) Calyceal terminals and MNTB neurons both showed phasic–tonic response patterns to tonal stimulation, but the duration of the onset response and the level of the tonic component were reduced postsynaptically. (4) Phase-locking to sound frequencies up to 1 kHz was greater postsynaptically than presynaptically. (5) The rate-intensity characteristics of pre- and postsynaptic activities differed significantly from each other in half of the MNTB neurons. To test the hypothesis that acoustically evoked inhibition of MNTB neurons contributed to the relatively lower levels of postsynaptic discharge, two-tone stimulation was applied, wherein the response to one tone-burst, set at the neuron's characteristic frequency, can be reduced by addition of a second "inhibitory" tone. The inhibitory tone caused a much larger reduction in post- than in presynaptic activity, indicating an acoustically evoked inhibitory influence directly on MNTB units. These findings show that transmission at the CN–MNTB synapse does not occur in a fixed one-to-one manner and that the response of MNTB neurons reflects the integration of their excitatory and inhibitory inputs

    Early Postnatal Development of Spontaneous and Acoustically Evoked Discharge Activity of Principal Cells of the Medial Nucleus of the Trapezoid Body: An In Vivo Study in Mice

    Full text link
    The calyx of Held synapse in the medial nucleus of the trapezoid body of the auditory brainstem has become an established in vitro model to study the development of fast glutamatergic transmission in the mammalian brain. However, we still lack in vivo data at this synapse on the maturation of spontaneous and sound-evoked discharge activity before and during the early phase of acoustically evoked signal processing (i.e., before and after hearing onset). Here we report in vivo single-unit recordings in mice from postnatal day 8 (P8) to P28 with a specific focus on developmental changes around hearing onset (P12). Data were obtained from two mouse strains commonly used in brain slice recordings: CBA/J and C57BL/6J. Spontaneous discharge rates progressively increased from P8 to P13, initially showing bursting patterns and large coefficients of variation (CVs), which changed to more continuous and random discharge activity accompanied by gradual decrease of CV around hearing onset. From P12 on, sound-evoked activity yielded phasic-tonic discharge patterns with discharge rates increasing up to P28. Response thresholds and shapes of tuning curves were adult-like by P14. A gradual shortening in response latencies was observed up to P18. The three-dimensional tonotopic organization of the medial nucleus of the trapezoid body yielded a high-to-low frequency gradient along the mediolateral and dorsoventral but not in the rostrocaudal axes. These data emphasize that models of signal transmission at the calyx of Held based on in vitro data have to take developmental changes in firing rates and response latencies up to the fourth postnatal week into account

    Interaction of Excitation and Inhibition in Anteroventral Cochlear Nucleus Neurons That Receive Large Endbulb Synaptic Endings

    Full text link
    Spherical bushy cells (SBCs) of the anteroventral cochlear nucleus (AVCN) receive their main excitatory input from auditory nerve fibers (ANFs) through large synapses, endbulbs of Held. These cells are also the target of inhibitory inputs whose function is not well understood. The present study examines the role of inhibition in the encoding of low-frequency sounds in the gerbil's AVCN. The presynaptic action potentials of endbulb terminals and postsynaptic action potentials of SBCs were monitored simultaneously in extracellular single-unit recordings in vivo. An input–output analysis of presynaptic and postsynaptic activity was performed for both spontaneous and acoustically driven activity. Two-tone stimulation and neuropharmacological experiments allowed the effects of neuronal inhibition and cochlear suppression on SBC activity to be distinguished. Ninety-one percent of SBCs showed significant neuronal inhibition. Inhibitory sidebands enclosed the high- or low-frequency, or both, sides of the excitatory areas of these units; this was reflected as a presynaptic to postsynaptic increase in frequency selectivity of up to one octave. Inhibition also affected the level-dependent responses at the characteristic frequency. Although in all units the presynaptic recordings showed monotonic rate-level functions, this was the case in only half of the postsynaptic recordings. In the other half of SBCs, postsynaptic inhibitory areas overlapped the excitatory areas, resulting in nonmonotonic rate-level functions. The results demonstrate that the sound-evoked spike activity of SBCs reflects the integration of acoustically driven excitatory and inhibitory input. The inhibition specifically affects the processing of the spectral, temporal, and intensity cues of acoustic signals

    Decreased Temporal Precision of Auditory Signaling in Kcna1-Null Mice: An Electrophysiological Study In Vivo

    Full text link
    The voltage-gated potassium (Kv) channel subunit Kv1.1, encoded by the Kcna1 gene, is expressed strongly in the ventral cochlear nucleus (VCN) and the medial nucleus of the trapezoid body (MNTB) of the auditory pathway. To examine the contribution of the Kv1.1 subunit to the processing of auditory information, in vivo single-unit recordings were made from VCN neurons (bushy cells), axonal endings of bushy cells at MNTB cells (calyces of Held), and MNTB neurons of Kcna1-null (-/-) mice and littermate control (+/+) mice. Thresholds and spontaneous firing rates of VCN and MNTB neurons were not different between genotypes. At higher sound intensities, however, evoked firing rates of VCN and MNTB neurons were significantly lower in -/- mice than +/+ mice. The SD of the first-spike latency (jitter) was increased in VCN neurons, calyces, and MNTB neurons of -/- mice compared with +/+ controls. Comparison along the ascending pathway suggests that the increased jitter found in -/- MNTB responses arises mostly in the axons of VCN bushy cells and/or their calyceal terminals rather than in the MNTB neurons themselves. At high rates of sinusoidal amplitude modulations, -/- MNTB neurons maintained high vector strength values but discharged on significantly fewer cycles of the amplitude-modulated stimulus than +/+ MNTB neurons. These results indicate that in Kcna1-null mice the absence of the Kv1.1 subunit results in a loss of temporal fidelity (increased jitter) and the failure to follow high-frequency amplitude-modulated sound stimulation in vivo

    Responses to SAM.

    No full text
    <p>Synchronization indices (left column) and entrainment (right column) as a function of modulation frequency for the different PSTH types. The respective bottommost plots show the average transfer functions for each PSTH type. The horizontal line indicates the 0.3 cut-off criterion that was chosen to classify responses as being phase-locked. Note that C<sub>S</sub> units show best and PL units worst ability to comodulate with fast fluctuations in stimulus amplitude.</p

    Cluster analyses considering all evaluated response properties.

    No full text
    <p><b>A</b>: Dendrogram illustrating the result of hierarchical cluster analysis. The units (n = 233) are lined up at the bottom of the graph. The analysis suggests five clusters characterized by a specific distribution of parameter values. <b>B</b>: Mean of the respective parameter values for each property in the resulted clusters I–V. The values are standardized and normalized to the respective maxima (for original data and statistical analyses see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0029965#pone-0029965-t002" target="_blank">table 2</a>). Note that for almost all individual properties significant differences exist between the clusters, and some properties also correlated across clusters. <b>C</b>: However, principal component analysis gives no indication for clearly separated groups of units, neither for the different clusters gathered from hierarchical cluster analysis (<b>C1</b>) nor for the different PSTH types (<b>C2</b>). In both cases units establishing different groups tend to accumulate in different regions of the plot. Still, the different groups strongly overlap, especially in the centre of the plot. Thus, with respect to their physiological properties the AVCN neurons form a continuum rather than distinct groups.</p
    corecore