52,164 research outputs found

    How to Couple from the Past Using a Read-Once Source of Randomness

    Full text link
    We give a new method for generating perfectly random samples from the stationary distribution of a Markov chain. The method is related to coupling from the past (CFTP), but only runs the Markov chain forwards in time, and never restarts it at previous times in the past. The method is also related to an idea known as PASTA (Poisson arrivals see time averages) in the operations research literature. Because the new algorithm can be run using a read-once stream of randomness, we call it read-once CFTP. The memory and time requirements of read-once CFTP are on par with the requirements of the usual form of CFTP, and for a variety of applications the requirements may be noticeably less. Some perfect sampling algorithms for point processes are based on an extension of CFTP known as coupling into and from the past; for completeness, we give a read-once version of coupling into and from the past, but it remains unpractical. For these point process applications, we give an alternative coupling method with which read-once CFTP may be efficiently used.Comment: 28 pages, 2 figure

    Modelling the cost effectiveness of interferon beta and glatiramer acetate in the management of multiple sclerosis

    Get PDF
    OBJECTIVE: To evaluate the cost effectiveness of four disease modifying treatments (interferon betas and glatiramer acetate) for relapsing remitting and secondary progressive multiple sclerosis in the United Kingdom. DESIGN: Modelling cost effectiveness. SETTING: UK NHS. PARTICIPANTS: Patients with relapsing remitting multiple sclerosis and secondary progressive multiple sclerosis. MAIN OUTCOME MEASURES: Cost per quality adjusted life year gained. RESULTS: The base case cost per quality adjusted life year gained by using any of the four treatments ranged from £42 000 ($66 469; 61 630) to £98 000 based on efficacy information in the public domain. Uncertainty analysis suggests that the probability of any of these treatments having a cost effectiveness better than £20 000 at 20 years is below 20%. The key determinants of cost effectiveness were the time horizon, the progression of patients after stopping treatment, differential discount rates, and the price of the treatments. CONCLUSIONS: Cost effectiveness varied markedly between the interventions. Uncertainty around point estimates was substantial. This uncertainty could be reduced by conducting research on the true magnitude of the effect of these drugs, the progression of patients after stopping treatment, the costs of care, and the quality of life of the patients. Price was the key modifiable determinant of the cost effectiveness of these treatments

    Modeling Acreage Response and US Farm Policy In a New Market Environment

    Get PDF
    Replaced with revised version of poster 9/2/11.Agricultural and Food Policy,

    The SseC translocon component in Salmonella enterica serovar Typhimurium is chaperoned by SscA

    Get PDF
    Background: Salmonella enterica is a causative agent of foodborne gastroenteritis and the systemic disease known as typhoid fever. This bacterium uses two type three secretion systems (T3SSs) to translocate protein effectors into host cells to manipulate cellular function. Salmonella pathogenicity island (SPI)-2 encodes a T3SS required for intracellular survival of the pathogen. Genes in SPI-2 include apparatus components, secreted effectors and chaperones that bind to secreted cargo to coordinate their release from the bacterial cell. Although the effector repertoire secreted by the SPI-2 T3SS is large, only three virulence-associated chaperones have been characterized. Results: Here we report that SscA is the chaperone for the SseC translocon component. We show that SscA and SseC interact in bacterial cells and that deletion of sscA results in a loss of SseC secretion, which compromises intracellular replication and leads to a loss of competitive fitness in mice. Conclusions: This work completes the characterization of the chaperone complement within SPI-2 and identifies SscA as the chaperone for the SseC translocon
    corecore