30 research outputs found

    Effectiveness of low-Dye taping for the short-term treatment of plantar heel pain: a randomised trial

    Get PDF
    BACKGROUND: Plantar heel pain is one of the most common musculoskeletal disorders of the foot and ankle. Treatment of the condition is usually conservative, however the effectiveness of many treatments frequently used in clinical practice, including supportive taping of the foot, has not been established. We performed a participant-blinded randomised trial to assess the effectiveness of low-Dye taping, a commonly used short-term treatment for plantar heel pain. METHODS: Ninety-two participants with plantar heel pain (mean age 50 ± 14 years; mean body mass index 30 ± 6; and median self-reported duration of symptoms 10 months, range of 2 to 240 months) were recruited from the general public between February and June 2005. Participants were randomly allocated to (i) low-Dye taping and sham ultrasound or (ii) sham ultrasound alone. The duration of follow-up for each participant was one week. No participants were lost to follow-up. Outcome measures included 'first-step' pain (measured on a 100 mm Visual Analogue Scale) and the Foot Health Status Questionnaire domains of foot pain, foot function and general foot health. RESULTS: Participants treated with low-Dye taping reported a small improvement in 'first-step' pain after one week of treatment compared to those who did not receive taping. The estimate of effect on 'first-step' pain favoured the low-Dye tape (ANCOVA adjusted mean difference -12.3 mm; 95% CI -22.4 to -2.2; P = 0.017). There were no other statistically significant differences between groups. Thirteen participants in the taping group experienced an adverse event however most were mild to moderate and short-lived. CONCLUSION: When used for the short-term treatment of plantar heel pain, low-Dye taping provides a small improvement in 'first-step' pain compared with a sham intervention after a one-week period

    Effectiveness of calf muscle stretching for the short-term treatment of plantar heel pain: a randomised trial

    Get PDF
    BACKGROUND: Plantar heel pain is one of the most common musculoskeletal disorders of the foot and ankle. Treatment of the condition is usually conservative, however the effectiveness of many treatments frequently used in clinical practice, including stretching, has not been established. We performed a participant-blinded randomised trial to assess the effectiveness of calf muscle stretching, a commonly used short-term treatment for plantar heel pain. METHODS: Ninety-two participants with plantar heel pain were recruited from the general public between April and June 2005. Participants were randomly allocated to an intervention group that were prescribed calf muscle stretches and sham ultrasound (n = 46) or a control group who received sham ultrasound alone (n = 46). The intervention period was two weeks. No participants were lost to follow-up. Primary outcome measures were 'first-step' pain (measured on a 100 mm Visual Analogue Scale) and the Foot Health Status Questionnaire domains of foot pain, foot function and general foot health. RESULTS: Both treatment groups improved over the two week period of follow-up but there were no statistically significant differences in improvement between groups for any of the measured outcomes. For example, the mean improvement for 'first-step' pain (0–100 mm) was -19.8 mm in the stretching group and -13.2 mm in the control group (adjusted mean difference between groups -7.9 mm; 95% CI -18.3 to 2.6). For foot function (0–100 scale), the stretching group improved 16.2 points and the control group improved 8.3 points (adjusted mean difference between groups 7.3; 95% CI -0.1 to 14.8). Ten participants in the stretching group experienced an adverse event, however most events were mild to moderate and short-lived. CONCLUSION: When used for the short-term treatment of plantar heel pain, a two-week stretching program provides no statistically significant benefit in 'first-step' pain, foot pain, foot function or general foot health compared to not stretching

    Considerations and methods for placebo controls in surgical trials (ASPIRE guidelines)

    Get PDF
    Placebo comparisons are increasingly being considered for randomised trials assessing the efficacy of surgical interventions. The aim of this Review is to provide a summary of knowledge on placebo controls in surgical trials. A placebo control is a complex type of comparison group in the surgical setting and, although powerful, presents many challenges. This Review outlines what a placebo control entails and present understanding of this tool in the context of surgery. We consider when placebo controls in surgery are acceptable (and when they are desirable) in terms of ethical arguments and regulatory requirements, how a placebo control should be designed, how to identify and mitigate risk for participants in these trials, and how such trials should be done and interpreted. Use of placebo controls is justified in randomised controlled trials of surgical interventions provided there is a strong scientific and ethical rationale. Surgical placebos might be most appropriate when there is poor evidence for the efficacy of the procedure and a justified concern that results of a trial would be associated with high risk of bias, particularly because of the placebo effect. Feasibility work is recommended to optimise the design and implementation of randomised controlled trials. This Review forms an outline for best practice and provides guidance, in the form of the Applying Surgical Placebo in Randomised Evaluations (known as ASPIRE) checklist, for those considering the use of a placebo control in a surgical randomised controlled trial

    Citrus Tristeza Virus Genotype Detection Using High-Throughput Sequencing

    No full text
    CITATION: Bester, R., Cook, G. & Maree, H.H. 2021. Citrus Tristeza Virus Genotype Detection Using High-Throughput Sequencing. Viruses, 13(2):1-17. https://doi.org/10.3390/v13020168The original publication is available at https://www.mdpi.com/journal/viruses/aboutThe application of high-throughput sequencing (HTS) has successfully been used for virus discovery to resolve disease etiology in many agricultural crops. The greatest advantage of HTS is that it can provide a complete viral status of a plant, including information on mixed infections of viral species or virus variants. This provides insight into the virus population structure, ecology, or evolution and can be used to differentiate among virus variants that may contribute differently toward disease etiology. In this study, the use of HTS for citrus tristeza virus (CTV) genotype detection was evaluated. A bioinformatic pipeline for CTV genotype detection was constructed and evaluated using simulated and real data sets to determine the parameters to discriminate between false positive read mappings and true genotype-specific genome coverage. A 50% genome coverage cut-off was identified for non-target read mappings. HTS with the associated bioinformatic pipeline was validated and proposed as a CTV genotyping assay.Publishers versio

    Towards the validation of high-throughput sequencing (HTS) for routine plant virus diagnostics: measurement of variation linked to HTS detection of citrus viruses and viroids

    Get PDF
    CITATION: Bester, R., et al. 2021. Towards the validation of high-throughput sequencing (HTS) for routine plant virus diagnostics: measurement of variation linked to HTS detection of citrus viruses and viroids. Virology Journal, 18:61, doi:10.1186/s12985-021-01523-1.The original publication is available at https://virologyj.biomedcentral.comPublication of this article was funded by the Stellenbosch University Open Access FundBackground: High-throughput sequencing (HTS) has been applied successfully for virus and viroid discovery in many agricultural crops leading to the current drive to apply this technology in routine pathogen detection. The validation of HTS-based pathogen detection is therefore paramount. Methods: Plant infections were established by graft inoculating a suite of viruses and viroids from established sources for further study. Four plants (one healthy plant and three infected) were sampled in triplicate and total RNA was extracted using two different methods (CTAB extraction protocol and the Zymo Research Quick-RNA Plant Miniprep Kit) and sent for Illumina HTS. One replicate sample of each plant for each RNA extraction method was also sent for HTS on an Ion Torrent platform. The data were evaluated for biological and technical variation focussing on RNA extraction method, platform used and bioinformatic analysis. Results: The study evaluated the influence of different HTS protocols on the sensitivity, specificity and repeatability of HTS as a detection tool. Both extraction methods and sequencing platforms resulted in significant differences between the data sets. Using a de novo assembly approach, complemented with read mapping, the Illumina data allowed a greater proportion of the expected pathogen scaffolds to be inferred, and an accurate virome profile was constructed. The complete virome profile was also constructed using the Ion Torrent data but analyses showed that more sequencing depth is required to be comparative to the Illumina protocol and produce consistent results. The CTAB extraction protocol lowered the proportion of viroid sequences recovered with HTS, and the Zymo Research kit resulted in more variation in the read counts obtained per pathogen sequence. The expression profiles of reference genes were also investigated to assess the suitability of these genes as internal controls to allow for the comparison between samples across different protocols. Conclusions: This study highlights the need to measure the level of variation that can arise from the different variables of an HTS protocol, from sample preparation to data analysis. HTS is more comprehensive than any assay previously used, but with the necessary validations and standard operating procedures, the implementation of HTS as part of routine pathogen screening practices is possible.https://virologyj.biomedcentral.com/articles/10.1186/s12985-021-01523-1Publisher's versio

    Reproducibility and Sensitivity of High-Throughput Sequencing (HTS)-Based Detection of Citrus Tristeza Virus and Three Citrus Viroids

    No full text
    The credibility of a pathogen detection assay is measured using specific parameters including repeatability, specificity, sensitivity, and reproducibility. The use of high-throughput sequencing (HTS) as a routine detection assay for viruses and viroids in citrus was previously evaluated and, in this study, the reproducibility and sensitivity of the HTS assay were assessed. To evaluate the reproducibility of HTS, the same plants assayed in a previous study were sampled again, one year later, and assessed in triplicate using the same analyses to construct the virome profile. The sensitivity of the HTS assay was compared to routinely used RT-PCR assays in a time course experiment, to compensate for natural pathogen accumulation in plants over time. The HTS pipeline applied in this study produced reproducible and comparable results to standard RT-PCR assays for the detection of CTV and three viroid species in citrus. Even though the limit of detection of HTS can be influenced by pathogen concentration, sample processing method and sequencing depth, detection with HTS was found to be either equivalent or more sensitive than RT-PCR in this study
    corecore