473 research outputs found

    Hard X-ray footpoint sizes and positions as diagnostics of flare accelerated energetic electrons in the low solar atmosphere

    Full text link
    The hard X-ray (HXR) emission in solar flares comes almost exclusively from a very small part of the flaring region, the footpoints of magnetic loops. Using RHESSI observations of solar flare footpoints, we determine the radial positions and sizes of footpoints as a function of energy in six near-limb events to investigate the transport of flare accelerated electrons and the properties of the chromosphere. HXR visibility forward fitting allows to find the positions/heights and the sizes of HXR footpoints along and perpendicular to the magnetic field of the flaring loop at different energies in the HXR range. We show that in half of the analyzed events, a clear trend of decreasing height of the sources with energy is found. Assuming collisional thick-target transport, HXR sources are located between 600 and 1200 km above the photosphere for photon energies between 120 and 25 keV respectively. In the other events, the position as a function of energy is constant within the uncertainties. The vertical sizes (along the path of electron propagation) range from 1.3 to 8 arcseconds which is up to a factor 4 larger than predicted by the thick-target model even in events where the positions/heights of HXR sources are consistent with the collisional thick-target model. Magnetic mirroring, collisional pitch angle scattering and X-ray albedo are discussed as potential explanations of the findings.Comment: 10 pages, 8 figures, accepted for publication in Ap

    The sub-arcsecond hard X-ray structure of loop footpoints in a solar flare

    Full text link
    The newly developed X-ray visibility forward fitting technique is applied to Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data of a limb flare to investigate the energy and height dependence on sizes, shapes, and position of hard X-ray chromospheric footpoint sources. This provides information about the electron transport and chromospheric density structure. The spatial distribution of two footpoint X-ray sources is analyzed using PIXON, Maximum Entropy Method, CLEAN and visibility forward fit algorithms at nonthermal energies from 20\sim 20 to 200\sim 200 keV. We report, for the first time, the vertical extents and widths of hard X-ray chromospheric sources measured as a function of energy for a limb event. Our observations suggest that both the vertical and horizontal sizes of footpoints are decreasing with energy. Higher energy emission originates progressively deeper in the chromosphere consistent with downward flare accelerated streaming electrons. The ellipticity of the footpoints grows with energy from 0.5\sim 0.5 at 20 \sim 20 keV to 0.9\sim 0.9 at 150\sim 150 keV. The positions of X-ray emission are in agreement with an exponential density profile of scale height 150\sim 150~km. The characteristic size of the hard X-ray footpoint source along the limb is decreasing with energy suggesting a converging magnetic field in the footpoint. The vertical sizes of X-ray sources are inconsistent with simple collisional transport in a single density scale height but can be explained using a multi-threaded density structure in the chromosphere.Comment: 7 pages, 7 figures, submitted to Ap

    Multiwavelength radio observations of the compact starburst in Arp 220

    Get PDF
    We report the first detection at multiple radio wavelengths (13, 6, and 3.6 cm) of 18 compact sources within both nuclei of the Ultra Luminous Infra-Red Galaxy (ULIRG) Arp 220. In just over half of the sources we find that the observed spectra are consistent with the standard model of powerful Type IIn supernovae interacting with their pre-explosion stellar wind. The rate of appearance of new radio sources ascribed to these supernova events suggests that a large fraction of core-collapse supernovae in Arp 220 are highly luminous, possibly implying a radically different stellar initial mass function (IMF) or stellar evolution compared to galactic disks. A second group of sources, consisting of the brightest and longest monitored sources at 18 cm, do not easily fit the radio supernova model. We propose that these are young supernova remnants that have just begun interacting with their surrounding dense ISM

    Multiwavelength radio observations of the compact starburst in Arp 220

    Get PDF
    We report the first detection at multiple radio wavelengths (13, 6, and 3.6 cm) of 18 compact sources within both nuclei of the Ultra Luminous Infra-Red Galaxy (ULIRG) Arp 220. In just over half of the sources we find that the observed spectra are consistent with the standard model of powerful Type IIn supernovae interacting with their pre-explosion stellar wind. The rate of appearance of new radio sources ascribed to these supernova events suggests that a large fraction of core-collapse supernovae in Arp 220 are highly luminous, possibly implying a radically different stellar initial mass function (IMF) or stellar evolution compared to galactic disks. A second group of sources, consisting of the brightest and longest monitored sources at 18 cm, do not easily fit the radio supernova model. We propose that these are young supernova remnants that have just begun interacting with their surrounding dense ISM

    The radio spectra of the compact sources in Arp 220: A mixed population of supernovae and supernova remnants

    Get PDF
    We report the first detection at multiple radio wavelengths (13, 6 and 3.6 cm) of the compact sources within both nuclei of the Ultra Luminous Infra-Red Galaxy Arp 220. We present the radio spectra of the 18 detected sources. In just over half of the sources we find that these spectra and other properties are consistent with the standard model of powerful Type IIn supernovae interacting with their pre-explosion stellar wind. The rate of appearance of new radio sources identified with these supernova events suggests that an unusually large fraction of core collapse supernovae in Arp 220 are highly luminous; possibly implying a radically different stellar initial mass function or stellar evolution compared to galactic disks. Another possible explanation invokes very short (~3 x 10^5 year) intense (~10^3 M_Sol year^-1) star formation episodes with a duty cycle of ~10%. A second group of our detected sources, consisting of the brightest and longest monitored sources at 18 cm do not easily fit the radio supernova model. These sources show a range of spectral indexes from -0.2 to -1.9. We propose that these are young supernova remnants which have just begun interacting with a surrounding ISM with a density between 10^4 and 10^5 cm^-3. One of these sources is probably resolved at 3.6 cm wavelength with a diameter 0.9 pc. In the western nucleus we estimate that the ionized component of the ISM gives rise to foreground free-free absorption with opacity at 18 cm of <0.6 along the majority of lines of sight. Other sources may be affected by absorption with opacity in the range 1 to 2. These values are consistent with previous models as fitted to the radio recombination lines and the continuum spectrum.Comment: 44 pages, 9 figures, 2 tables. Accepted for publication in Ap

    Inhibiting ERK Activation with CI-1040 Leads to Compensatory Upregulation of Alternate MAPKs and Plasminogen Activator Inhibitor-1 following Subtotal Nephrectomy with No Impact on Kidney Fibrosis

    Get PDF
    Extracellular-signal regulated kinase (ERK) activation by MEK plays a key role in many of the cellular processes that underlie progressive kidney fibrosis including cell proliferation, apoptosis and transforming growth factor β1-mediated epithelial to mesenchymal transition. We therefore assessed the therapeutic impact of ERK1/2 inhibition using a MEK inhibitor in the rat 5/6 subtotal nephrectomy (SNx) model of kidney fibrosis. There was a twentyfold upregulation in phospho-ERK1/2 expression in the kidney after SNx in Male Wistar rats. Rats undergoing SNx became hypertensive, proteinuric and developed progressive kidney failure with reduced creatinine clearance. Treatment with the MEK inhibitor, CI-1040 abolished phospho- ERK1/2 expression in kidney tissue and prevented phospho-ERK1/2 expression in peripheral lymphocytes during the entire course of therapy. CI-1040 had no impact on creatinine clearance, proteinuria, glomerular and tubular fibrosis, and α-smooth muscle actin expression. However, inhibition of ERK1/2 activation led to significant compensatory upregulation of the MAP kinases, p38 and JNK in kidney tissue. CI-1040 also increased the expression of plasminogen activator inhibitor-1 (PAI-1), a key inhibitor of plasmin-dependent matrix metalloproteinases. Thus inhibition of ERK1/2 activation has no therapeutic effect on kidney fibrosis in SNx possibly due to increased compensatory activation of the p38 and JNK signalling pathways with subsequent upregulation of PAI-1

    Mentoring Impact on Leader Efficacy Development: A Field Experiment

    Get PDF
    While practitioners and scholars tout the importance of mentorship in leader development, few studies have empirically determined whether mentoring actually positively impacts a leader’s development, and if so, in what ways. In a longitudinal field experiment, we examined how a targeted mentorship program that unfolded over 6 months enhanced the development of protégés’ leader efficacy and performance. Results showed that the targeted mentorship intervention increased protégés’ level of leader efficacy more than a comparison intervention that was based on a more eclectic leadership education program delivered in a group setting. Leader efficacy then predicted rated leader performance. Both protégés’ preferences for feedback and trust in the mentor served as important moderators in contributing to the development of leader efficacy. Findings from this longitudinal field experiment could be used by educational institutions and other organizations to enhance their mentorship programs in content, focus, and evaluation of impact
    corecore