60 research outputs found

    Biological Roles of the Podospora anserina Mitochondrial Lon Protease and the Importance of Its N-Domain

    Get PDF
    Mitochondria have their own ATP-dependent proteases that maintain the functional state of the organelle. All multicellular eukaryotes, including filamentous fungi, possess the same set of mitochondrial proteases, unlike in unicellular yeasts, where ClpXP, one of the two matricial proteases, is absent. Despite the presence of ClpXP in the filamentous fungus Podospora anserina, deletion of the gene encoding the other matricial protease, PaLon1, leads to lethality at high and low temperatures, indicating that PaLON1 plays a main role in protein quality control. Under normal physiological conditions, the PaLon1 deletion is viable but decreases life span. PaLon1 deletion also leads to defects in two steps during development, ascospore germination and sexual reproduction, which suggests that PaLON1 ensures important regulatory functions during fungal development. Mitochondrial Lon proteases are composed of a central ATPase domain flanked by a large non-catalytic N-domain and a C-terminal protease domain. We found that three mutations in the N-domain of PaLON1 affected fungal life cycle, PaLON1 protein expression and mitochondrial proteolytic activity, which reveals the functional importance of the N-domain of the mitochondrial Lon protease. All PaLon1 mutations affected the C-terminal part of the N-domain. Considering that the C-terminal part is predicted to have an α helical arrangement in which the number, length and position of the helices are conserved with the solved structure of its bacterial homologs, we propose that this all-helical structure participates in Lon substrate interaction

    Mortar-based systems for externally bonded strengthening of masonry

    Get PDF
    Mortar-based composite materials appear particularly promising for use as externally bonded reinforcement (EBR) systems for masonry structures. Nevertheless, their mechanical performance, which may significantly differ from that of Fibre Reinforced Polymers, is still far from being fully investigated. Furthermore, standardized and reliable testing procedures have not been defined yet. The present paper provides an insight on experimental-related issues arising from campaigns on mortar-based EBRs carried out by laboratories in Italy, Portugal and Spain. The performance of three reinforcement systems made out of steel, carbon and basalt textiles embedded in inorganic matrices has been investigated by means of uniaxial tensile coupon testing and bond tests on brick and stone substrates. The experimental results contribute to the existing knowledge regarding the structural behaviour of mortar-based EBRs against tension and shear bond stress, and to the development of reliable test procedures aiming at their homogenization/standardization

    Spatio-Temporal Dynamics of Yeast Mitochondrial Biogenesis: Transcriptional and Post-Transcriptional mRNA Oscillatory Modules

    Get PDF
    Examples of metabolic rhythms have recently emerged from studies of budding yeast. High density microarray analyses have produced a remarkably detailed picture of cycling gene expression that could be clustered according to metabolic functions. We developed a model-based approach for the decomposition of expression to analyze these data and to identify functional modules which, expressed sequentially and periodically, contribute to the complex and intricate mitochondrial architecture. This approach revealed that mitochondrial spatio-temporal modules are expressed during periodic spikes and specific cellular localizations, which cover the entire oscillatory period. For instance, assembly factors (32 genes) and translation regulators (47 genes) are expressed earlier than the components of the amino-acid synthesis pathways (31 genes). In addition, we could correlate the expression modules identified with particular post-transcriptional properties. Thus, mRNAs of modules expressed “early” are mostly translated in the vicinity of mitochondria under the control of the Puf3p mRNA-binding protein. This last spatio-temporal module concerns mostly mRNAs coding for basic elements of mitochondrial construction: assembly and regulatory factors. Prediction that unknown genes from this module code for important elements of mitochondrial biogenesis is supported by experimental evidence. More generally, these observations underscore the importance of post-transcriptional processes in mitochondrial biogenesis, highlighting close connections between nuclear transcription and cytoplasmic site-specific translation

    A Deubiquitylating Complex Required for Neosynthesis of a Yeast Mitochondrial ATP Synthase Subunit

    Get PDF
    The ubiquitin system is known to be involved in maintaining the integrity of mitochondria, but little is known about the role of deubiquitylating (DUB) enzymes in such functions. Budding yeast cells deleted for UBP13 and its close homolog UBP9 displayed a high incidence of petite colonies and slow respiratory growth at 37°C. Both Ubp9 and Ubp13 interacted directly with Duf1 (DUB-associated factor 1), a WD40 motif-containing protein. Duf1 activates the DUB activity of recombinant Ubp9 and Ubp13 in vitro and deletion of DUF1 resulted in the same respiratory phenotype as the deletion of both UBP9 and UBP13. We show that the mitochondrial defects of these mutants resulted from a strong decrease at 37°C in the de novo biosynthesis of Atp9, a membrane-bound component of ATP synthase encoded by mitochondrial DNA. The defect appears at the level of ATP9 mRNA translation, while its maturation remained unchanged in the mutants. This study describes a new role of the ubiquitin system in mitochondrial biogenesis

    Plasmodium chabaudi chabaudi malaria parasites can develop stable resistance to atovaquone with a mutation in the cytochrome b gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum</it>, has developed resistance to many of the drugs in use. The recommended treatment policy is now to use drug combinations. The atovaquone-proguanil (AP) drug combination, is one of the treatment and prophylaxis options. Atovaquone (ATQ) exerts its action by inhibiting plasmodial mitochondria electron transport at the level of the cytochrome bc1 complex. <it>Plasmodium falciparum in vitro </it>resistance to ATQ has been associated with specific point mutations in the region spanning codons 271-284 of the <it>cytochrome b </it>gene. ATQ -resistant <it>Plasmodium yoelii </it>and <it>Plasmodium berghei </it>lines have been obtained and resistant lines have amino acid mutations in their CYT <it>b </it>protein sequences. <it>Plasmodium chabaudi </it>model for studying drug-responses and drug-resistance selection is a very useful rodent malaria model but no ATQ resistant parasites have been reported so far. The aim of this study was to determine the ATQ sensitivity of the <it>P. chabaudi </it>clones, to select a resistant parasite line and to perform genotypic characterization of the <it>cytb </it>gene of these clones.</p> <p>Methods</p> <p>To select for ATQ resistance, <it>Plasmodium. chabaudi chabaudi </it>clones were exposed to gradually increasing concentrations of ATQ during several consecutive passages in mice. <it>Plasmodium chabaudi cytb </it>gene was amplified and sequenced.</p> <p>Results</p> <p>ATQ resistance was selected from the clone AS-3CQ. In order to confirm whether an heritable genetic mutation underlies the response of AS-ATQ to ATQ, the stability of the drug resistance phenotype in this clone was evaluated by measuring drug responses after (i) multiple blood passages in the absence of the drug, (ii) freeze/thawing of parasites in liquid nitrogen and (iii) transmission through a mosquito host, <it>Anopheles stephensi</it>. ATQ resistance phenotype of the drug-selected parasite clone kept unaltered. Therefore, ATQ resistance in clone AS-ATQ is genetically encoded. The Minimum Curative Dose of AS-ATQ showed a six-fold increase in MCD to ATQ relative to AS-3CQ.</p> <p>Conclusions</p> <p>A mutation was found on the <it>P. chabaudi cytb </it>gene from the AS-ATQ sample a substitution at the residue Tyr268 for an Asn, this mutation is homologous to the one found in <it>P. falciparum </it>isolates resistant to ATQ.</p

    The Transcriptional Response of Drosophila melanogaster to Infection with the Sigma Virus (Rhabdoviridae)

    Get PDF
    Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus

    Isolation of a natural DNA virus of <i>Drosophila melanogaster</i>, and characterisation of host resistance and immune responses

    Get PDF
    <div><p><i>Drosophila melanogaster</i> has played a key role in our understanding of invertebrate immunity. However, both functional and evolutionary studies of host-virus interaction in <i>Drosophila</i> have been limited by a dearth of native virus isolates. In particular, despite a long history of virus research, DNA viruses of <i>D</i>. <i>melanogaster</i> have only recently been described, and none have been available for experimental study. Here we report the isolation and comprehensive characterisation of Kallithea virus, a large double-stranded DNA virus, and the first DNA virus to have been reported from wild populations of <i>D</i>. <i>melanogaster</i>. We find that Kallithea virus infection is costly for adult flies, reaching high titres in both sexes and disproportionately reducing survival in males, and movement and late fecundity in females. Using the <i>Drosophila</i> Genetic Reference Panel, we quantify host genetic variance for virus-induced mortality and viral titre and identify candidate host genes that may underlie this variation, including <i>Cdc42-interacting protein 4</i>. Using full transcriptome sequencing of infected males and females, we examine the transcriptional response of flies to Kallithea virus infection and describe differential regulation of virus-responsive genes. This work establishes Kallithea virus as a new tractable model to study the natural interaction between <i>D</i>. <i>melanogaster</i> and DNA viruses, and we hope it will serve as a basis for future studies of immune responses to DNA viruses in insects.</p></div

    Overexpression of DNA Polymerase Zeta Reduces the Mitochondrial Mutability Caused by Pathological Mutations in DNA Polymerase Gamma in Yeast

    Get PDF
    In yeast, DNA polymerase zeta (Rev3 and Rev7) and Rev1, involved in the error-prone translesion synthesis during replication of nuclear DNA, localize also in mitochondria. We show that overexpression of Rev3 reduced the mtDNA extended mutability caused by a subclass of pathological mutations in Mip1, the yeast mitochondrial DNA polymerase orthologous to human Pol gamma. This beneficial effect was synergistic with the effect achieved by increasing the dNTPs pools. Since overexpression of Rev3 is detrimental for nuclear DNA mutability, we constructed a mutant Rev3 isoform unable to migrate into the nucleus: its overexpression reduced mtDNA mutability without increasing the nuclear one
    corecore