880 research outputs found
Envejecimiento de asfaltos durante el mezclado
En este trabajo se estudia, mediante ensayos de laboratorio, la alteración que sufren los asfaltos durante la operación de mezclado en usina.
Empleando un mezclador de laboratorio, se prepararon mezclas asfálticas bajo condiciones controladas de tiempo y temperatura. El asfalto componente de la mezcla asfáltica fue recuperado mediante el método de Abson. Sobre este se estudió el grado de alteración mediante medidas de viscosidad, utilizando el microviscosímetro de placas deslizantes, y por espectrofoto- metría infrarroja. Además se estudió la acción inhibidora de ciertos aditivos recomendados como inhibidores de oxidación, tratando de poner de manifiesto su eficacia y forma de actuar.In this paper the alteration of asphalt cements that occur during the manufacture of paving mixtures in the plant mixing operation was studied, by laboratory testing.
The bituminous mixtures were prepared in a laboratory mixer under controlled conditions (time and temperature). The asphalts under test were recovered by means of the Abson method.
The alteration was studied measuring the viscosity with the sliding plate microviscometer and by infrarred spectra. Furthermore a study of the action of inhibitors of oxidation was made. This test was conducted to determine the effectiveness and the mechanism by which the antioxidants perform
Serum Levels of Tryptophan, 5-Hydroxytryptophan and Serotonin in Patients Affected with Different Forms of Amenorrhea
Tryptophan (Trp) is present in the serum, partly bound to albumine and in the free form. The unbound portion of circulating tryptophan has the property of crossing the hematoencephalic barrier and being converted within the brain into serotonin (5-HT) through the enzymatic processes of hydroxylation and decarboxylation. The serotoninergic system plays an important role in neuroendocrine control of reproductive hormone secretion, and in particular, it may influence GnRH pulsatility, a function essential for reproductive processes. In this study, we analysed serum levels of tryptophan, serotonin and 5-hydroxytryptophan (5-HTP) in women with three different forms of amenorrhea: 16 patients were diagnosed with anorexia nervosa, 60 patients with functional hypothalamic amenorrhea, and 14 patients with hyperprolactinemia. Data were compared with those of a group of 25 healthy women. Serum Trp levels were significantly (P ≤ 0.05) lower in the anorexic (11.64 ± 0.53 μg/ml, mean ± S.E.) than in the control (12.98 ± 0.37 μg/ml) groups. In addition, in the anorexic group a statistical dispersion of Trp values was shown indicating a bimodal data distribution suggesting the existence of two different subgroups of patients. Regarding 5-HTP, an increase of its serum level was observed in all the groups with amenorrhea with the highest value in hyperprolactinemic patients. On the contrary, no statistical differences in serum 5-HT levels among the four analyzed groups were observed
Catastrophic chromosomal restructuring during genome elimination in plants.
Genome instability is associated with mitotic errors and cancer. This phenomenon can lead to deleterious rearrangements, but also genetic novelty, and many questions regarding its genesis, fate and evolutionary role remain unanswered. Here, we describe extreme chromosomal restructuring during genome elimination, a process resulting from hybridization of Arabidopsis plants expressing different centromere histones H3. Shattered chromosomes are formed from the genome of the haploid inducer, consistent with genomic catastrophes affecting a single, laggard chromosome compartmentalized within a micronucleus. Analysis of breakpoint junctions implicates breaks followed by repair through non-homologous end joining (NHEJ) or stalled fork repair. Furthermore, mutation of required NHEJ factor DNA Ligase 4 results in enhanced haploid recovery. Lastly, heritability and stability of a rearranged chromosome suggest a potential for enduring genomic novelty. These findings provide a tractable, natural system towards investigating the causes and mechanisms of complex genomic rearrangements similar to those associated with several human disorders
High-throughput discovery of rare human nucleotide polymorphisms by Ecotilling
Human individuals differ from one another at only ∼0.1% of nucleotide positions, but these single nucleotide differences account for most heritable phenotypic variation. Large-scale efforts to discover and genotype human variation have been limited to common polymorphisms. However, these efforts overlook rare nucleotide changes that may contribute to phenotypic diversity and genetic disorders, including cancer. Thus, there is an increasing need for high-throughput methods to robustly detect rare nucleotide differences. Toward this end, we have adapted the mismatch discovery method known as Ecotilling for the discovery of human single nucleotide polymorphisms. To increase throughput and reduce costs, we developed a universal primer strategy and implemented algorithms for automated band detection. Ecotilling was validated by screening 90 human DNA samples for nucleotide changes in 5 gene targets and by comparing results to public resequencing data. To increase throughput for discovery of rare alleles, we pooled samples 8-fold and found Ecotilling to be efficient relative to resequencing, with a false negative rate of 5% and a false discovery rate of 4%. We identified 28 new rare alleles, including some that are predicted to damage protein function. The detection of rare damaging mutations has implications for models of human disease
INDOOR MOBILE MAPPING SYSTEMS AND (BIM) DIGITAL MODELS FOR CONSTRUCTION PROGRESS MONITORING
Technological developments of the last decades are making possible to speed up different processes involved in construction projects. It is noticeable what building information modeling (BIM) can offer during the entire lifecycle of a project by integrating graphical and non graphical data, in addition to this, mapping the site with a 3D laser scan has been proved to provide a feasible workflow to compare as built models with as designed BIM, in this way, an automatic construction progress monitoring can also be performed. Terrestrial laser scanners (TLS) are commonly used to map a construction site due the level of accuracy provided, but indoor mobile mapping systems (iMMS) could offer a more efficient approach by speeding up the acquisition time and capturing all the details of the site just by walking through it, provided that the point cloud is accurate enough for the purpose of interest. In this paper, an iMMS is used to track the progress of a construction site, the point clouds were uploaded onto a platform of autonomous construction progress monitoring to verify if the system can meet the requirements of available applications. The results showed that the iMMS used is capable to produce point clouds with a quality such that the construction progress monitoring can be performed
Discovery of chemically induced mutations in rice by TILLING
BACKGROUND: Rice is both a food source for a majority of the world's population and an important model system. Available functional genomics resources include targeted insertion mutagenesis and transgenic tools. While these can be powerful, a non-transgenic, unbiased targeted mutagenesis method that can generate a range of allele types would add considerably to the analysis of the rice genome. TILLING (Targeting Induced Local Lesions in Genomes), a general reverse genetic technique that combines traditional mutagenesis with high throughput methods for mutation discovery, is such a method. RESULTS: To apply TILLING to rice, we developed two mutagenized rice populations. One population was developed by treatment with the chemical mutagen ethyl methanesulphonate (EMS), and the other with a combination of sodium azide plus methyl-nitrosourea (Az-MNU). To find induced mutations, target regions of 0.7–1.5 kilobases were PCR amplified using gene specific primers labeled with fluorescent dyes. Heteroduplexes were formed through denaturation and annealing of PCR products, mismatches digested with a crude preparation of CEL I nuclease and cleaved fragments visualized using denaturing polyacrylamide gel electrophoresis. In 10 target genes screened, we identified 27 nucleotide changes in the EMS-treated population and 30 in the Az-MNU population. CONCLUSION: We estimate that the density of induced mutations is two- to threefold higher than previously reported rice populations (about 1/300 kb). By comparison to other plants used in public TILLING services, we conclude that the populations described here would be suitable for use in a large scale TILLING project
Iloprost in Acute Post-kidney Transplant Atheroembolism: A Case Report of Two Successful Treatments
Cholesterol embolization (CE) is a rare and alarming post-transplant complication, responsible for primary non-function (PNF) or delayed graft function (DGF). Its incidence is expected to rise due to increasingly old donors and recipients and the extended criteria for donation. Therapy with statins and steroids has not been shown to be effective, while agonism of prostaglandin I2 has been reported to be useful in systemic CE. We report two cases of acute post-transplant CE in which intravenous iloprost (0.05 mg/kg/day) was added to standard statin and steroid therapy. In the first instance, CE was due to embolization from the kidney artery resulting in embolization of the small vessels; after a long DGF and 15 days of iloprost therapy, renal function recovered. The second instance is a case of embolization from the iliac artery of the recipient, where CE manifested as a partial renal infarction. After 5 days of iloprost administration, creatinine levels improved. Iloprost acts on vasodilation and on different inflammatory pathways, improving the anti-inflammatory profile. Post-transplant CE is difficult to diagnose and, if not treated, can lead to loss of function. Iloprost added to standard therapy could be beneficial in accelerating renal function recovery immediately after transplant
Immunological effects of a single hemodialysis treatment
Immune disorders, involving both innate and adaptive response, are common in patients with end-stage renal disease under chronic hemodialysis. Endogenous and exogenous factors, such as uremic toxins and the extracorporeal treatment itself, alter the immune balance, leading to chronic inflammation and higher risk of cardiovascular events. Several studies have previously described the immune effects of chronic hemodialysis and the possibility to modulate inflammation through more biocompatible dialyzers and innovative techniques. On the other hand, very limited data are available on the possible immunological effects of a single hemodialysis treatment. In spite of the lacking information about the immunological reactivity related to a single session, there is evidence to indicate that mediators of innate and adaptive response, above all complement cascade and T cells, are implicated in immune system modulation during hemodialysis treatment. Expanding our understanding of these modulations represents a necessary basis to develop pro-tolerogenic strategies in specific conditions, like hemodialysis in septic patients or the last session prior to kidney transplant in candidates for receiving a graft
A case report of IgG4-related disease: an insidious path to the diagnosis through kidney, heart and brain
BACKGROUND: IgG4-related disease, described around the years 2000 as a form of autoimmune pancreatitis, is now increasingly accepted as a systemic syndrome. The diagnosis is based on both comprehensive and organ-specific criteria. For the kidney, Mayo clinic classification and the guidelines of the Japanese Nephrology Society are used. Ultimately, together with parameters that characterize every organ or apparatus involved, the key element is the confirmation of growing levels of IgG4 in blood or in tissues. CASE PRESENTATION: We describe a male patient with chronic renal failure associated to hypertension without proteinuria. IgG4-related disease was diagnosed through renal biopsy. After an initial positive response to steroids, he presented tinnitus, and histological assessment showed cerebral and subsequently cardiac damage, both IgG4-related. This case appears unique for the type of histologically documented cardiac and neurological parenchymal involvement, and at the same time, exemplifies the subtle and pernicious course of the disease. Frequently, blurred and non-specific signs prevail. Here, kidney damage was associated with minimal urinary findings, slowly progressive renal dysfunction and other factors that can be equivocated in the differential diagnosis. Neurological involvement was represented by tinnitus alone, while cardiac alterations were completely asymptomatic. CONCLUSIONS: This report is representative of the neurological and cardiac changes described in the literature for IgG4-related disease, which may be correlated or not with the renal form and highlights the need, in some cases, of targeted therapeutic approaches. In addition to glucocorticoids, as in this case, rituximab may be necessary
Transgene-Induced Gene Silencing Is Not Affected by a Change in Ploidy Level
BACKGROUND: Whole genome duplication, which results in polyploidy, is a common feature of plant populations and a recurring event in the evolution of flowering plants. Polyploidy can result in changes to gene expression and epigenetic instability. Several epigenetic phenomena, occurring at the transcriptional or post-transcriptional level, have been documented in allopolyploids (polyploids derived from species hybrids) of Arabidopsis thaliana, yet findings in autopolyploids (polyploids derived from the duplication of the genome of a single species) are limited. Here, we tested the hypothesis that an increase in ploidy enhances transgene-induced post-transcriptional gene silencing using autopolyploids of A. thaliana. METHODOLOGY/PRINCIPAL FINDINGS: Diploid and tetraploid individuals of four independent homozygous transgenic lines of A. thaliana transformed with chalcone synthase (CHS) inverted repeat (hairpin) constructs were generated. For each line diploids and tetraploids were compared for efficiency in post-transcriptional silencing of the endogenous CHS gene. The four lines differed substantially in their silencing efficiency. Yet, diploid and tetraploid plants derived from these plants and containing therefore identical transgene insertions showed no difference in the efficiency silencing CHS as assayed by visual scoring, anthocyanin assays and quantification of CHS mRNA. CONCLUSIONS/SIGNIFICANCE: Our results in A. thaliana indicated that there is no effect of ploidy level on transgene-induced post-transcriptional gene silencing. Our findings that post-transcriptional mechanisms were equally effective in diploids and tetraploids supports the use of transgene-driven post-transcriptional gene silencing as a useful mechanism to modify gene expression in polyploid species
- …