704 research outputs found

    Infrared spectroscopy of solid CO-CO2 mixtures and layers

    Get PDF
    The spectra of pure, mixed and layered CO and CO2 ices have been studied systematically under laboratory conditions using infrared spectroscopy. This work provides improved resolution spectra (0.5 cm-1) of the CO2 bending and asymmetric stretching mode, as well as the CO stretching mode, extending the existing Leiden database of laboratory spectra to match the spectral resolution reached by modern telescopes and to support the interpretation of the most recent data from Spitzer. It is shown that mixed and layered CO and CO2 ices exhibit very different spectral characteristics, which depend critically on thermal annealing and can be used to distinguish between mixed, layered and thermally annealed CO-CO2 ices. CO only affects the CO2 bending mode spectra in mixed ices below 50K under the current experimental conditions, where it exhibits a single asymmetric band profile in intimate mixtures. In all other ice morphologies the CO2 bending mode shows a double peaked profile, similar to that observed for pure solid CO2. Conversely, CO2 induces a blue-shift in the peak-position of the CO stretching vibration, to a maximum of 2142 cm-1 in mixed ices, and 2140-2146 cm-1 in layered ices. As such, the CO2 bending mode puts clear constraints on the ice morphology below 50K, whereas beyond this temperature the CO2 stretching vibration can distinguish between initially mixed and layered ices. This is illustrated for the low-mass YSO HH46, where the laboratory spectra are used to analyse the observed CO and CO2 band profiles and try to constrain the formation scenarios of CO2.Comment: Accepted in A&

    Antiepileptic drugs prescribed in pregnancy and prevalence of major congenital malformations: comparative prevalence studies.

    Get PDF
    OBJECTIVE: The aim of this study was to examine the prevalence of major congenital malformations associated with antiepileptic drug (AED) treatment in pregnancy. PATIENTS AND METHODS: Using data from The Health Improvement Network, we identified women who have given live birth and their offspring. Four subgroups were selected based on the AED treatment in early pregnancy, valproate, carbamazepine, lamotrigine and women not receiving AED treatment. We compared the prevalence of major congenital malformations within children of these four groups and estimated prevalence ratios (PRs) using Poisson regression adjusted for maternal age, sex of child, quintiles of Townsend deprivation score and indication for treatment. RESULTS: In total, 240,071 women were included in the study. A total of 229 women were prescribed valproate in pregnancy, 357 were prescribed lamotrigine and 334 were prescribed carbamazepine and 239,151 women were not prescribed AEDs. Fifteen out of 229 (6.6%) women prescribed valproate gave birth to a child with a major congenital malformation. The figures for lamotrigine, carbamazepine and women not prescribed AEDs were 2.7%, 3.3% and 2.2%, respectively. The prevalence of major congenital malformation was similar for women prescribed lamotrigine or carbamazepine compared to women with no AED treatment in pregnancy. For women prescribed valproate in polytherapy, the prevalence was fourfold higher. After adjustments, the effect of estimates attenuated, but the prevalence remained two- to threefold higher in women prescribed valproate. CONCLUSION: The results of our study suggest that lamotrigine and carbamazepine are safer treatment options than valproate in pregnancy and should be considered as alternative treatment options for women of childbearing potential and in pregnancy

    Quantification of segregation dynamics in ice mixtures

    Full text link
    (Abridged) The observed presence of pure CO2 ice in protostellar envelopes is attributed to thermally induced ice segregation, but a lack of quantitative experimental data has prevented its use as a temperature probe. Quantitative segregation studies are also needed to characterize diffusion in ices, which underpins all ice dynamics and ice chemistry. This study aims to quantify the segregation mechanism and barriers in different H2O:CO2 and H2O:CO ice mixtures covering a range of astrophysically relevant ice thicknesses and mixture ratios. The ices are deposited at 16-50 K under (ultra-)high vacuum conditions. Segregation is then monitored at 23-70 K as a function of time, through infrared spectroscopy. Thin (8-37 ML) H2O:CO2/CO ice mixtures segregate sequentially through surface processes, followed by an order of magnitude slower bulk diffusion. Thicker ices (>100 ML) segregate through a fast bulk process. The thick ices must therefore be either more porous or segregate through a different mechanism, e.g. a phase transition. The segregation dynamics of thin ices are reproduced qualitatively in Monte Carlo simulations of surface hopping and pair swapping. The experimentally determined surface-segregation rates for all mixture ratios follow the Ahrrenius law with a barrier of 1080[190] K for H2O:CO2 and 300[100] K for H2O:CO mixtures. During low-mass star formation H2O:CO2 segregation will be important already at 30[5] K. Both surface and bulk segregation is proposed to be a general feature of ice mixtures when the average bond strengths of the mixture constituents in pure ice exceeds the average bond strength in the ice mixture.Comment: Accepted for publication in A&A. 25 pages, including 13 figure

    Projection of holograms from photorefractive OASLMs

    Get PDF
    Liquid crystals doped with fullerenes and carbon nanotubes (CNTs) act as good optical nonlinear materials. We have used these materials to build optically-addressed spatial light modulators (OASLMs). The devices comprise a single layer of doped liquid crystal acting as an active layer. Undoped LC devices with surfaces coated with fullerenes are also studied. Such OASLMs allow recording of phase holograms, and we record by imaging pre-calculated pre-recorded holograms. Writing is performed at normal incidence and reading at 45° oblique incidence. Both transmission and reflection modes of operation are used. Experimental results as well as comparison with commercially available OASLMs are presented

    Prospects for Improving the Intrinsic and Extrinsic Properties of Magnesium Diboride Superconducting Strands

    Full text link
    The magnetic and transport properties of magnesium diboride films represent performance goals yet to be attained by powder-processed bulk samples and conductors. Such performance limits are still out of the reach of even the best magnesium diboride magnet wire. In discussing the present status and prospects for improving the performance of powder-based wire we focus attention on (1) the intrinsic (intragrain) superconducting properties of magnesium diboride, Hc2 and flux pinning, (2) factors that control the efficiency with which current is transported from grain-to-grain in the conductor, an extrinsic (intergrain) property. With regard to Item-(1), the role of dopants in Hc2 enhancement is discussed and examples presented. On the other hand their roles in increasing Jc, both via Hc2 enhancement as well as direct fluxoid/pining-center interaction, are discussed and a comprehensive survey of Hc2 dopants and flux-pinning additives is presented. Current transport through the powder-processed wire (an extrinsic property) is partially blocked by the inherent granularity of the material itself and the chemical or other properties of the intergrain surfaces. These and other such results indicate that in many cases less than 15% of the conductor's cross sectional area is able to carry transport current. It is pointed out that densification in association with the elimination of grain-boundary blocking phases would yield five-to ten-fold increases in Jc in relevant regimes, enabling the performance of magnesium diboride in selected applications to compete with that of Nb-Sn
    corecore