704 research outputs found
Infrared spectroscopy of solid CO-CO2 mixtures and layers
The spectra of pure, mixed and layered CO and CO2 ices have been studied
systematically under laboratory conditions using infrared spectroscopy. This
work provides improved resolution spectra (0.5 cm-1) of the CO2 bending and
asymmetric stretching mode, as well as the CO stretching mode, extending the
existing Leiden database of laboratory spectra to match the spectral resolution
reached by modern telescopes and to support the interpretation of the most
recent data from Spitzer. It is shown that mixed and layered CO and CO2 ices
exhibit very different spectral characteristics, which depend critically on
thermal annealing and can be used to distinguish between mixed, layered and
thermally annealed CO-CO2 ices. CO only affects the CO2 bending mode spectra in
mixed ices below 50K under the current experimental conditions, where it
exhibits a single asymmetric band profile in intimate mixtures. In all other
ice morphologies the CO2 bending mode shows a double peaked profile, similar to
that observed for pure solid CO2. Conversely, CO2 induces a blue-shift in the
peak-position of the CO stretching vibration, to a maximum of 2142 cm-1 in
mixed ices, and 2140-2146 cm-1 in layered ices. As such, the CO2 bending mode
puts clear constraints on the ice morphology below 50K, whereas beyond this
temperature the CO2 stretching vibration can distinguish between initially
mixed and layered ices. This is illustrated for the low-mass YSO HH46, where
the laboratory spectra are used to analyse the observed CO and CO2 band
profiles and try to constrain the formation scenarios of CO2.Comment: Accepted in A&
Antiepileptic drugs prescribed in pregnancy and prevalence of major congenital malformations: comparative prevalence studies.
OBJECTIVE: The aim of this study was to examine the prevalence of major congenital malformations associated with antiepileptic drug (AED) treatment in pregnancy. PATIENTS AND METHODS: Using data from The Health Improvement Network, we identified women who have given live birth and their offspring. Four subgroups were selected based on the AED treatment in early pregnancy, valproate, carbamazepine, lamotrigine and women not receiving AED treatment. We compared the prevalence of major congenital malformations within children of these four groups and estimated prevalence ratios (PRs) using Poisson regression adjusted for maternal age, sex of child, quintiles of Townsend deprivation score and indication for treatment. RESULTS: In total, 240,071 women were included in the study. A total of 229 women were prescribed valproate in pregnancy, 357 were prescribed lamotrigine and 334 were prescribed carbamazepine and 239,151 women were not prescribed AEDs. Fifteen out of 229 (6.6%) women prescribed valproate gave birth to a child with a major congenital malformation. The figures for lamotrigine, carbamazepine and women not prescribed AEDs were 2.7%, 3.3% and 2.2%, respectively. The prevalence of major congenital malformation was similar for women prescribed lamotrigine or carbamazepine compared to women with no AED treatment in pregnancy. For women prescribed valproate in polytherapy, the prevalence was fourfold higher. After adjustments, the effect of estimates attenuated, but the prevalence remained two- to threefold higher in women prescribed valproate. CONCLUSION: The results of our study suggest that lamotrigine and carbamazepine are safer treatment options than valproate in pregnancy and should be considered as alternative treatment options for women of childbearing potential and in pregnancy
Quantification of segregation dynamics in ice mixtures
(Abridged) The observed presence of pure CO2 ice in protostellar envelopes is
attributed to thermally induced ice segregation, but a lack of quantitative
experimental data has prevented its use as a temperature probe. Quantitative
segregation studies are also needed to characterize diffusion in ices, which
underpins all ice dynamics and ice chemistry. This study aims to quantify the
segregation mechanism and barriers in different H2O:CO2 and H2O:CO ice mixtures
covering a range of astrophysically relevant ice thicknesses and mixture
ratios. The ices are deposited at 16-50 K under (ultra-)high vacuum conditions.
Segregation is then monitored at 23-70 K as a function of time, through
infrared spectroscopy. Thin (8-37 ML) H2O:CO2/CO ice mixtures segregate
sequentially through surface processes, followed by an order of magnitude
slower bulk diffusion. Thicker ices (>100 ML) segregate through a fast bulk
process. The thick ices must therefore be either more porous or segregate
through a different mechanism, e.g. a phase transition. The segregation
dynamics of thin ices are reproduced qualitatively in Monte Carlo simulations
of surface hopping and pair swapping. The experimentally determined
surface-segregation rates for all mixture ratios follow the Ahrrenius law with
a barrier of 1080[190] K for H2O:CO2 and 300[100] K for H2O:CO mixtures. During
low-mass star formation H2O:CO2 segregation will be important already at 30[5]
K. Both surface and bulk segregation is proposed to be a general feature of ice
mixtures when the average bond strengths of the mixture constituents in pure
ice exceeds the average bond strength in the ice mixture.Comment: Accepted for publication in A&A. 25 pages, including 13 figure
Projection of holograms from photorefractive OASLMs
Liquid crystals doped with fullerenes and carbon nanotubes (CNTs) act as good optical nonlinear materials. We have used these materials to build optically-addressed spatial light modulators (OASLMs). The devices comprise a single layer of doped liquid crystal acting as an active layer. Undoped LC devices with surfaces coated with fullerenes are also studied. Such OASLMs allow recording of phase holograms, and we record by imaging pre-calculated pre-recorded holograms. Writing is performed at normal incidence and reading at 45° oblique incidence. Both transmission and reflection modes of operation are used. Experimental results as well as comparison with commercially available OASLMs are presented
Prospects for Improving the Intrinsic and Extrinsic Properties of Magnesium Diboride Superconducting Strands
The magnetic and transport properties of magnesium diboride films represent
performance goals yet to be attained by powder-processed bulk samples and
conductors. Such performance limits are still out of the reach of even the best
magnesium diboride magnet wire. In discussing the present status and prospects
for improving the performance of powder-based wire we focus attention on (1)
the intrinsic (intragrain) superconducting properties of magnesium diboride,
Hc2 and flux pinning, (2) factors that control the efficiency with which
current is transported from grain-to-grain in the conductor, an extrinsic
(intergrain) property. With regard to Item-(1), the role of dopants in Hc2
enhancement is discussed and examples presented. On the other hand their roles
in increasing Jc, both via Hc2 enhancement as well as direct
fluxoid/pining-center interaction, are discussed and a comprehensive survey of
Hc2 dopants and flux-pinning additives is presented. Current transport through
the powder-processed wire (an extrinsic property) is partially blocked by the
inherent granularity of the material itself and the chemical or other
properties of the intergrain surfaces. These and other such results indicate
that in many cases less than 15% of the conductor's cross sectional area is
able to carry transport current. It is pointed out that densification in
association with the elimination of grain-boundary blocking phases would yield
five-to ten-fold increases in Jc in relevant regimes, enabling the performance
of magnesium diboride in selected applications to compete with that of Nb-Sn
- …