127 research outputs found
Silent Self-stabilizing BFS Tree Algorithms Revised
In this paper, we revisit two fundamental results of the self-stabilizing
literature about silent BFS spanning tree constructions: the Dolev et al
algorithm and the Huang and Chen's algorithm. More precisely, we propose in the
composite atomicity model three straightforward adaptations inspired from those
algorithms. We then present a deep study of these three algorithms. Our results
are related to both correctness (convergence and closure, assuming a
distributed unfair daemon) and complexity (analysis of the stabilization time
in terms of rounds and steps)
Self-Stabilizing Distributed Cooperative Reset
Self-stabilization is a versatile fault-tolerance approach that characterizes the ability of a system to eventually resume a correct behavior after any finite number of transient faults. In this paper, we propose a self-stabilizing reset algorithm working in anonymous networks. This algorithm resets the network in a distributed non-centralized manner, i.e., it is multi-initiator, as each process detecting an inconsistency may initiate a reset. It is also cooperative in the sense that it coordinates concurrent reset executions in order to gain efficiency. Our approach is general since our reset algorithm allows to build self-stabilizing solutions for various problems and settings. As a matter of facts, we show that it applies to both static and dynamic specifications since we propose efficient self-stabilizing reset-based algorithms for the (1-minimal) (f, g)-alliance (a generalization of the dominating set problem) in identified networks and the unison problem in anonymous networks. Notice that these two latter instantiations enhance the state of the art. Indeed, in the former case, our solution is more general than the previous ones, while in the latter case, the complexity of our unison algorithm is better than that of previous solutions of the literature
Self-Stabilizing Disconnected Components Detection and Rooted Shortest-Path Tree Maintenance in Polynomial Steps
We deal with the problem of maintaining a shortest-path tree rooted at some process r in a network that may be disconnected after topological changes. The goal is then to maintain a shortest-path tree rooted at r in its connected component, V_r, and make all processes of other components detecting that r is not part of their connected component. We propose, in the composite atomicity model, a silent self-stabilizing algorithm for this problem working in semi-anonymous networks under the distributed unfair daemon (the most general daemon) without requiring any a priori knowledge about global parameters of the network. This is the first algorithm for this problem that is proven to achieve a polynomial stabilization time in steps. Namely, we exhibit a bound in O(W_{max} * n_{maxCC}^3 * n), where W_{max} is the maximum weight of an edge, n_{maxCC} is the maximum number of non-root processes in a connected component, and n is the number of processes. The stabilization time in rounds is at most 3n_{maxCC} + D, where D is the hop-diameter of V_r
Fair and Reliable Self-Stabilizing Communication
12 pages -- Edition: World Scientific Version 2: soumission ArXivInternational audienceWe assume a link-register communication model under read/write atomicity, where every process can read from but cannot write into its neighbours' registers. The paper presents two self-stabilizing protocols for basic fair and reliable link communication primitives. The rst primitive guarantees that any process writes a new value in its register(s) only after all its neighbours have read the previous value, whatever the initial scheduling of processes' actions. The second primitive implements a weak rendezvous communication mechanism by using an alternating bit protocol: whenever a process consecutively writes n values (possibly the same ones) in a register, each neighbour is guaranteed to read each value from the register at least once. Both protocols are self-stabilizing and run in asynchronous arbitrary networks. The goal of the paper is in handling each primitive by a separate procedure, which can be used as a black box in more involved self-stabilizing protocols
A Self-Stabilizing Communication Primitive
Invited paperInternational audienceThe goal of the paper is to provide designers of self-stabilizing protocols with a fair and reliable communication primitive, which allows any proces that writes a value in its own register to make sure that every neihgbour eventually does read that value. We assume a link register communication model under read/write atomicity, where every process can read but cannot write into its neighbours' registers. The primitive runs a self-stabilizing protocol, which implements a "rendezvous" communication mechanism in the link register asynchronous model. This protocol works in arbitrary networks and also solves the problem of how to simulate reliable self-stabilizing message-passing in asynchronous distributed systems
Polynomial Silent Self-Stabilizing p-Star Decomposition
We present a silent self-stabilizing distributed algorithm computing a maximal p-star decomposition of the underlying communication network. Under the unfair distributed scheduler, the most general scheduler model, the algorithm converges in at most 12∆m + O(m + n) moves, where m is the number of edges, n is the number of nodes, and ∆ is the maximum node degree. Regarding the move complexity, our algorithm outperforms the previously known best algorithm by a factor of ∆. While the round complexity for the previous algorithm was unknown, we show a 5 [n/(p+1)] + 5 bound for our algorithm
Efficient Wait-Free Queue Algorithms with Multiple Enqueuers and Multiple Dequeuers
Despite the widespread usage of FIFO queues in distributed applications, designing efficient wait-free implementations of queues remains a challenge. The majority of wait-free queue implementations restrict either the number of dequeuers or the number of enqueuers that can operate on the queue, even when they use strong synchronization primitives, like the Compare&Swap. If we do not limit the number of processes that can perform enqueue and dequeue operations, the best-known upper bound on the worst case step complexity for a wait-free queue is given by [Khanchandani and Wattenhofer, 2018]. In particular, they present an implementation of a multiple dequeuer multiple enqueuer wait-free queue whose worst case step complexity is in O(?n), where n is the number of processes. In this work, we investigate whether it is possible to improve this bound. In particular, we present a wait-free FIFO queue implementation that supports n enqueuers and k dequeuers where the worst case step complexity of an Enqueue operation is in O(log n) and of a Dequeue operation is in O(k log n).
Then, we show that if the semantics of the queue can be relaxed, by allowing concurrent Dequeue operations to retrieve the same element, then we can achieve O(log n) worst-case step complexity for both the Enqueue and Dequeue operations
Making local algorithms efficiently self-stabilizing in arbitrary asynchronous environments
This paper deals with the trade-off between time, workload, and versatility
in self-stabilization, a general and lightweight fault-tolerant concept in
distributed computing.In this context, we propose a transformer that provides
an asynchronous silent self-stabilizing version Trans(AlgI) of any terminating
synchronous algorithm AlgI. The transformed algorithm Trans(AlgI) works under
the distributed unfair daemon and is efficient both in moves and rounds.Our
transformer allows to easily obtain fully-polynomial silent self-stabilizing
solutions that are also asymptotically optimal in rounds.We illustrate the
efficiency and versatility of our transformer with several efficient (i.e.,
fully-polynomial) silent self-stabilizing instances solving major distributed
computing problems, namely vertex coloring, Breadth-First Search (BFS) spanning
tree construction, k-clustering, and leader election
- …