64,224 research outputs found
Chandra detection of extended X-ray emission from the recurrent nova RS Ophiuchi
Radio, infrared, and optical observations of the 2006 eruption of the
symbiotic recurrent nova RS Ophiuchi (RS Oph) showed that the explosion
produced non-spherical ejecta. Some of this ejected material was in the form of
bipolar jets to the east and west of the central source. Here we describe Xray
observations taken with the Chandra X-ray Observatory one and a half years
after the beginning of the outburst that reveal narrow, extended structure with
a position angle of approximately 300 degrees (east of north). Although the
orientation of the extended feature in the X-ray image is consistent with the
readout direction of the CCD detector, extensive testing suggests that the
feature is not an artifact. Assuming it is not an instrumental effect, the
extended X-ray structure shows hot plasma stretching more than 1,900 AU from
the central binary (taking a distance of 1.6 kpc). The X-ray emission is
elongated in the northwest direction - in line with the extended infrared
emission and some minor features in the published radio image. It is less
consistent with the orientation of the radio jets and the main bipolar optical
structure. Most of the photons in the extended X-ray structure have energies of
less than 0.8 keV. If the extended X-ray feature was produced when the nova
explosion occurred, then its 1".2 length as of 2007 August implies that it
expanded at an average rate of more than 2 mas/d, which corresponds to a flow
speed of greater than 6,000 km/s (d/1.6 kpc) in the plane of the sky. This
expansion rate is similar to the earliest measured expansion rates for the
radio jets.Comment: accepted in Ap
Simulating the nanomechanical response of cyclooctatetraene molecules on a graphene device
We investigate the atomic and electronic structures of cyclooctatetraene
(COT) molecules on graphene and analyze their dependence on external gate
voltage using first-principles calculations. The external gate voltage is
simulated by adding or removing electrons using density functional theory (DFT)
calculations. This allows us to investigate how changes in carrier density
modify the molecular shape, orientation, adsorption site, diffusion barrier,
and diffusion path. For increased hole doping COT molecules gradually change
their shape to a more flattened conformation and the distance between the
molecules and graphene increases while the diffusion barrier drastically
decreases. For increased electron doping an abrupt transition to a planar
conformation at a carrier density of -810 e/cm is observed.
These calculations imply that the shape and mobility of adsorbed COT molecules
can be controlled by externally gating graphene devices
Coupled magnetic and elastic properties in LaPr(CaSr)MnO manganites
We investigate a series of manganese oxides, the
La0.225Pr0.4(Ca1-xSrx)0.375MnO3 system. The x = 0 sample is a prototype
compound for the study of phase separation in manganites, where ferromagnetic
and charge ordered antiferromagnetic phases coexist. Replacing Ca2+ by Sr2+
gradually turns the system into a homogeneous ferromagnet. Our results show
that the material structure plays a major role in the observed magnetic
properties. On cooling, at temperatures below 100 K, a strong contraction of
the lattice is followed by an increase in the magnetization. This is observed
both through thermal expansion and magnetostriction measurements, providing
distinct evidence of magneto-elastic coupling in these phase separated
compounds
Disorder effects at low temperatures in La_{0.7-x}Y_{x}Ca_{0.3}MnO_{3} manganites
With the aim of probing the effect of magnetic disorder in the
low-temperature excitations of manganites, specific-heat measurements were
performed in zero field, and in magnetic fields up to 9 T in polycrystalline
samples of La_{0.7-x}Y_{x}Ca_{0.3}MnO_{3}, with Y concentrations x=0, 0.10, and
0.15. Yttrium doping yielded the appearance of a cluster-glass state, giving
rise to unusual low-temperature behavior of the specific-heat. The main feature
observed in the results is a strong enhancement of the specific-heat linear
term, which is interpreted as a direct consequence of magnetic disorder. The
analysis was further corroborated by resistivity measurements in the same
compounds.Comment: 9 pages, 2 figure
Predicted band structures of III-V semiconductors in wurtzite phase
While non-nitride III-V semiconductors typically have a zincblende structure,
they may also form wurtzite crystals under pressure or when grown as
nanowhiskers. This makes electronic structure calculation difficult since the
band structures of wurtzite III-V semiconductors are poorly characterized. We
have calculated the electronic band structure for nine III-V semiconductors in
the wurtzite phase using transferable empirical pseudopotentials including
spin-orbit coupling. We find that all the materials have direct gaps. Our
results differ significantly from earlier {\it ab initio} calculations, and
where experimental results are available (InP, InAs and GaAs) our calculated
band gaps are in good agreement. We tabulate energies, effective masses, and
linear and cubic Dresselhaus zero-field spin-splitting coefficients for the
zone-center states. The large zero-field spin-splitting coefficients we find
may lead to new functionalities for designing devices that manipulate spin
degrees of freedom
A novel method for the injection and manipulation of magnetic charge states in nanostructures
Realising the promise of next-generation magnetic nanotechnologies is
contingent on the development of novel methods for controlling magnetic states
at the nanoscale. There is currently demand for simple and flexible techniques
to access exotic magnetisation states without convoluted fabrication and
application processes. 360 degree domain walls (metastable twists in
magnetisation separating two domains with parallel magnetisation) are one such
state, which is currently of great interest in data storage and magnonics.
Here, we demonstrate a straightforward and powerful process whereby a moving
magnetic charge, provided experimentally by a magnetic force microscope tip,
can write and manipulate magnetic charge states in ferromagnetic nanowires. The
method is applicable to a wide range of nanowire architectures with
considerable benefits over existing techniques. We confirm the method's
efficacy via the injection and spatial manipulation of 360 degree domain walls
in Py and Co nanowires. Experimental results are supported by micromagnetic
simulations of the tip-nanowire interaction.Comment: in Scientific Reports (2016
Development of a prototype plastic space erectable satellite Quarterly report, Jun. - Aug. 1966
Copper plated high-density polyethylene film evaluation for space erectable satellite desig
Baryons in QCD_{AS} at Large N_c: A Roundabout Approach
QCD_{AS}, a variant of large N_c QCD in which quarks transform under the
color two-index antisymmetric representation, reduces to standard QCD at N_c =
3 and provides an alternative to the usual large N_c extrapolation that uses
fundamental representation quarks. Previous strong plausibility arguments
assert that the QCD_{AS} baryon mass scales as N_c^2; however, the complicated
combinatoric problem associated with quarks carrying two color indices impeded
a complete demonstration. We develop a diagrammatic technique to solve this
problem. The key ingredient is the introduction of an effective multi-gluon
vertex: a "traffic circle" or "roundabout" diagram. We show that arbitrarily
complicated diagrams can be reduced to simple ones with the same leading N_c
scaling using this device, and that the leading contribution to baryon mass
does, in fact, scale as N_c^2.Comment: 9 pages, 9 pdf figures, ReVTeX with pdflate
Giant electrocaloric effect around T
We use molecular dynamics with a first-principles-based shell model potential
to study the electrocaloric effect (ECE) in lithium niobate, LiNbO, and
find a giant electrocaloric effect along a line passing through the
ferroelectric transition. With applied electric field, a line of maximum ECE
passes through the zero field ferroelectric transition, continuing along a
Widom line at high temperatures with increasing field, and along the
instability that leads to homogeneous ferroelectric switching below with
an applied field antiparallel to the spontaneous polarization. This line is
defined as the minimum in the inverse capacitance under applied electric field.
We investigate the effects of pressure, temperature and applied electric field
on the ECE. The behavior we observe in LiNbO should generally apply to
ferroelectrics; we therefore suggest that the operating temperature for
refrigeration and energy scavenging applications should be above the
ferroelectric transition region to obtain large electrocaloric response. We
find a relationship among , the Widom line and homogeneous switching that
should be universal among ferroelectrics, relaxors, multiferroics, and the same
behavior should be found under applied magnetic fields in ferromagnets.Comment: 5 page
- …