3,365 research outputs found
Mid-infrared colour gradients and the colour-magnitude relation in Virgo early-type galaxies
We make use of Spitzer imaging between 4 and 16 micron and near-infrared data
at 2.2 micron to investigate the nature and distribution of the mid-infrared
emission in a sample of early-type galaxies in the Virgo cluster. These data
allow us to conclude, with some confidence, that the emission at 16 micron in
passive ETGs is stellar in origin, consistent with previous work concluding
that the excess mid-infrared emission comes from the dusty envelopes around
evolved AGB stars. There is little evidence for the mid-infrared emission of an
unresolved central component, as might arise in the presence of a dusty torus
associated with a low-luminosity AGN. We nonetheless find that the 16 micron
emission is more centrally peaked than the near-infrared emission, implying a
radial stellar population gradient. By comparing with independent evidence from
studies at optical wavelengths, we conclude that a metallicity that falls with
increasing radius is the principal driver of the observed gradient. We also
plot the mid-infrared colour-magnitude diagram and combine with similar work on
the Coma cluster to define the colour-magnitude relation for absolute K-band
magnitudes from -26 to -19. Because a correlation between mass and age would
produce a relation with a gradient in the opposite sense to that observed, we
conclude that the relation reflects the fact that passive ETGs of lower mass
also have a lower average metallicity. The colour-magnitude relation is thus
driven by metallicity effects. In contrast to what is found in Coma, we do not
find any objects with anomalously bright 16 micron emission relative to the
colour-magnitude relation. Although there is little overlap in the mass ranges
probed in the two clusters, this may suggest that observable ``rejuvenation''
episodes are limited to intermediate mass objects.Comment: 8 pages, 4 figure
Early Type Galaxies in the Mid Infrared: a new flavor to their stellar populations
The mid infrared emission of early type galaxies traces the presence of
intermediate age stellar populations as well as even tiny amounts of ongoing
star formation. Here we discuss high S/N Spitzer IRS spectra of a sample of
Virgo early type galaxies, with particular reference to NGC 4435. We show that,
by combining mid infrared spectroscopic observations with existing broad band
fluxes, it is possible to obtain a very clean picture of the nuclear activity
in this galaxy.Comment: 4 pages; proceedings of IAU Symposium No. 241, "Stellar Populations
as Building Blocks of Galaxies", editors A. Vazdekis and R. Peletie
Mode identification of Pulsating White Dwarfs using the HST
We have obtained time-resolved ultraviolet spectroscopy for the pulsating DAV
stars G226-29 and G185-32, and for the pulsating DBV star PG1351+489 with the
Hubble Space Telescope Faint Object Spectrograph, to compare the ultraviolet to
the optical pulsation amplitude and determine the pulsation indices. We find
that for essentially all observed pulsation modes, the amplitude rises to the
ultraviolet as the theoretical models predict for l=1 non-radial g-modes. We do
not find any pulsation mode visible only in the ultraviolet, nor any modes
whose phase flips by 180 degrees; in the ultraviolet, as would be expected if
high l pulsations were excited. We find one periodicity in the light curve of
G185-32, at 141 s, which does not fit theoretical models for the change of
amplitude with wavelength of g-mode pulsations.Comment: Accepted for publication in the Astrophysical Journal, Aug 200
Elliptic curve configurations on Fano surfaces
The elliptic curves on a surface of general type constitute an obstruction
for the cotangent sheaf to be ample. In this paper, we give the classification
of the configurations of the elliptic curves on the Fano surface of a smooth
cubic threefold. That means that we give the number of such curves, their
intersections and a plane model. This classification is linked to the
classification of the automorphism groups of theses surfaces.Comment: 17 pages, accepted and shortened version, the rest will appear in
"Fano surfaces with 12 or 30 elliptic curves
Memory Organization for Energy-Efficient Learning and Inference in Digital Neuromorphic Accelerators
The energy efficiency of neuromorphic hardware is greatly affected by the
energy of storing, accessing, and updating synaptic parameters. Various methods
of memory organisation targeting energy-efficient digital accelerators have
been investigated in the past, however, they do not completely encapsulate the
energy costs at a system level. To address this shortcoming and to account for
various overheads, we synthesize the controller and memory for different
encoding schemes and extract the energy costs from these synthesized blocks.
Additionally, we introduce functional encoding for structured connectivity such
as the connectivity in convolutional layers. Functional encoding offers a 58%
reduction in the energy to implement a backward pass and weight update in such
layers compared to existing index-based solutions. We show that for a 2 layer
spiking neural network trained to retain a spatio-temporal pattern, bitmap
(PB-BMP) based organization can encode the sparser networks more efficiently.
This form of encoding delivers a 1.37x improvement in energy efficiency coming
at the cost of a 4% degradation in network retention accuracy as measured by
the van Rossum distance.Comment: submitted to ISCAS202
Local moments and symmetry breaking in metallic PrMnSbO
We report a combined experimental and theoretical investigation of the
layered antimonide PrMnSbO which is isostructural to the parent phase of the
iron pnictide superconductors. We find linear resistivity near room temperature
and Fermi liquid-like T^{2} behaviour below 150 K. Neutron powder diffraction
shows that unfrustrated C-type Mn magnetic order develops below \sim 230 K,
followed by a spin-flop coupled to induced Pr order. At T \sim 35 K, we find a
tetragonal to orthorhombic (T-O) transition. First principles calculations show
that the large magnetic moments observed in this metallic compound are of local
origin. Our results are thus inconsistent with either the itinerant or
frustrated models proposed for symmetry breaking in the iron pnictides. We show
that PrMnSbO is instead a rare example of a metal where structural distortions
are driven by f-electron degrees of freedom
- …