We make use of Spitzer imaging between 4 and 16 micron and near-infrared data
at 2.2 micron to investigate the nature and distribution of the mid-infrared
emission in a sample of early-type galaxies in the Virgo cluster. These data
allow us to conclude, with some confidence, that the emission at 16 micron in
passive ETGs is stellar in origin, consistent with previous work concluding
that the excess mid-infrared emission comes from the dusty envelopes around
evolved AGB stars. There is little evidence for the mid-infrared emission of an
unresolved central component, as might arise in the presence of a dusty torus
associated with a low-luminosity AGN. We nonetheless find that the 16 micron
emission is more centrally peaked than the near-infrared emission, implying a
radial stellar population gradient. By comparing with independent evidence from
studies at optical wavelengths, we conclude that a metallicity that falls with
increasing radius is the principal driver of the observed gradient. We also
plot the mid-infrared colour-magnitude diagram and combine with similar work on
the Coma cluster to define the colour-magnitude relation for absolute K-band
magnitudes from -26 to -19. Because a correlation between mass and age would
produce a relation with a gradient in the opposite sense to that observed, we
conclude that the relation reflects the fact that passive ETGs of lower mass
also have a lower average metallicity. The colour-magnitude relation is thus
driven by metallicity effects. In contrast to what is found in Coma, we do not
find any objects with anomalously bright 16 micron emission relative to the
colour-magnitude relation. Although there is little overlap in the mass ranges
probed in the two clusters, this may suggest that observable ``rejuvenation''
episodes are limited to intermediate mass objects.Comment: 8 pages, 4 figure