37 research outputs found
Efficient Neutron Production from a Novel Configuration of Deuterium Gas-Puff Z-Pinch
A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Y-n = (2.9 +/- 0.3) x 10(12) at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5 x 10(7). This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons
Semiconductor Detectors for Observation of Multi-MeV Protons and Ions Produced by Lasers
The application of time-of-flight Faraday cups and SiC detectors for the measurement of currents of fast ions emitted by laser-produced plasmas is reported. Presented analysis of signals of ion detectors reflects the design and construction of the detector used. A similarity relation between output signals of ion collectors and semiconductor detectors is established. Optimization of the diagnostic system is discussed with respect to the emission time of electromagnetic pulses interfering with signals induced by the fastest ions accelerated up to velocities of 107 m/s. The experimental campaign on laser-driven ion acceleration was performed at the PALS facility in Prague
Laser produced electromagnetic pulses : Generation, detection and mitigation
This paper provides an up-to-date review of the problems related to the generation, detection and mitigation of strong electromagnetic pulses created in the interaction of high-power, high-energy laser pulses with different types of solid targets. It includes new experimental data obtained independently at several international laboratories. The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce. The major emphasis is put on the gHz frequency domain, which is the most damaging for electronics and may have important applications. The physics of electromagnetic emissions in other spectral domains, in particular THz and MHz, is also discussed. The theoretical models and numerical simulations are compared with the results of experimental measurements, with special attention to the methodology of measurements and complementary diagnostics. Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions, which may have promising applications
Experimental research of neutron yield and spectrum from deuterium gas-puff z-pinch on the GIT-12 generator at current above 2 MA
The Z-pinch experiments with deuterium gas-puff surrounded by an outer plasma shell were carried out on the GIT-12 generator (Tomsk, Russia) at currents of 2 MA. The plasma shell consisting of hydrogen and carbon ions was formed by 48 plasma guns. The deuterium gas-puff was created by a fast electromagnetic valve. This configuration provides an efficient mode of the neutron production in DD reaction, and the neutron yield reaches a value above 1012 neutrons per shot. Neutron diagnostics included scintillation TOF detectors for determination of the neutron energy spectrum, bubble detectors BD-PND, a silver activation detector, and several activation samples for determination of the neutron yield analysed by a Sodium Iodide (NaI) and a high-purity Germanium (HPGe) detectors. Using this neutron diagnostic complex, we measured the total neutron yield and amount of high-energy neutrons
MCNP calculations of neutron emission anisotropy caused by the GIT-12 hardware
The MCNP6 and MCNPX calculations for the GIT-12 device in Tomsk were performed to determine
the influence of the gas-puff hardware on the neutron emission anisotropy and the neutron scattering rate. A
monoenergetic 2.45 MeV neutron source and F1 and F6 tallies were declared in the simulation input. A comparison
between MCNP results and the measured data was made. Differences between MCNPX and MCNP6
output data were investigated. In the experiment, two nTOF scintillation detectors with the Bicron BC-408
scintillator were used to measure the neutron waveform. Four bubble BD-PND detectors were used to estimate
the amount of neutrons in different places around the neutron source
Target current: a useful parameter for characterizing laser ablation
AbstractA current flowing between the ground and target exposed to the nanosecond laser radiation is analyzed to complete characteristics of laser ablation. Three phases of the target current are distinguished. During the ignition phase, the electron emission is driven by the laser pulse and the positive charge generated on the target is balanced by electrons coming from the ground through the target holder. At post-pulse times, a peaked waveform of the target current is typical for the active phase of the plasma and can give information on the material composition of the ablated surface layers. The afterglow phase is determined by a current of electrons flowing from the target to the ground. Experiment shows that the time-resolved target current is very sensitive to the actual composition of the surface layer of irradiated target and laser parameters