
Measurement of electromagnetic pulses generated during interactions
of high power lasers with solid targets

Marco, M. D., Krása, J., Cikhardt, J., Pfeifer, M., Krouský, E., Margarone, D., ... Ullschmied, J. (2016).
Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets.
Journal of Instrumentation, 11, [C06004]. DOI: 10.1088/1748-0221/11/06/C06004

Published in:
Journal of Instrumentation

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 IOP Publishing Ltd and Sissa Medialab srl
This is an author-created, un-copyedited version of an article
accepted for publication in Journal of Instrumentation. The publisher is
not responsible for any errors or omissions in this version of the
manuscript or any version derived from it. The Version of Record is
available online at http://iopscience.iop.org/article/10.1088/1748-0221/11/06/C06004/meta
General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/74404449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/measurement-of-electromagnetic-pulses-generated-during-interactions-of-high-power-lasers-with-solid-targets(ad279478-566b-4954-ba55-5b72d2cd014f).html


 

 

 

 
 

Measuring of electromagnetic pulses generated 
during interactions of high power lasers with solid 
targets  

M. De Marco a, b,1
, J. Krása

a
, J. Cikhardtc,g, M. Pfeiferc, E. Krouskýc, D. Margaronea, 

H. Ahmedd, M. Borghesid, S. Kard, L. Giuffridaa, R. Vranaa, A. Velyhan
a
, 

J. Limpouch
b
, G. Korna, S. Webera, L. Velardie, D. Delle Sidef, V. Nassisif and J. 

Ullschmiedc  

a. Institute of Physics ASCR, v.v.i (FZU), ELI-Beamlines project,  

Prague, Czech Republic 

b. Czech Technical University in Prague, FNSPE,  

Brehavá 7, 115 19 Prague 1, Czech Republic  

c. Institute of Plasma Physics CAS, 

Za Slovankou 3, 182 00 Prague 8, Czech Republic 

d. School of Mathematics and Physics, Queen's University of Belfast, 

Belfast BT7 1NN, United Kingdom 

e. CNR_NANOTEC,  

Via Amendola 122/D, 70126 Bari, Italy 

f. LEAS, Dipartimento di Matematica e Fisica, Universitá del Salento,  

Via Arnesano, sn-73100 Lecce, Italy  

g. Czech Technical University in Prague, FEE,  

Technická 2, 166 27, Prague 6 

                      

E-mail: Massimo.DeMarco@eli-beams.eu 

ABSTRACT: A target irradiated with a high power laser pulse, blows off a large amount of 

charge and as a consequence the target itself becomes a power generator of electromagnetic 

pulses (EMP) owing to high return current flowing to the ground through the target holder. The 

first measurement of the magnetic field induced by the neutralizing current reaching a value of a 

few kA was performed with the use of an inductive target probe at the PALS Laser Facility 

(Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation 

should contain information on the spatial distribution and temporal variation of the 

electromagnetic field inside and outside of the interaction chamber. For this reason, we consider 

the interaction chamber as a resonant cavity in which different modes of EMP oscillate for 

hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and 

EM waves are attenuated. Since the experimental determination of the electromagnetic field 

distribution is limited by the number of employed antennas, a mapping of the electromagnetic 

field has to be integrated with numerical simulations. Thus, this work reports on a detailed 

numerical mapping of the electromagnetic field inside the interaction chamber at the PALS 

Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial 

code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated 

in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the 

Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of 

PALS.  
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1. Introduction 

When high power laser pulses interact with solid targets, electromagnetic pulses are produced. 

This phenomenon is strongly connected with the emission of a large amount of hot electrons 

from the target, leaving it positively charged [1] which results in the flow of pulsed return 

current through the stalk holding the target [2]. The target's voltage appears as transient for a 

time of a microsecond with maximum amplitude in the order of hundreds of kV and with a 

broad frequency range from megahertz to hundreds of gigahertz [3]. The generated EMP can 

couple with laboratory equipment, damaging electronic devices and interfering with their 

signals. Many efforts were carried out and many ideas were proposed to mitigate the production 

of EMP in high power laser facilities and to reduce its effects on electronic devices [4, 5], as 

well as to reduce the coupling of EMP with the detected signals such as for the ion collector 

(IC) ones [6]. To be able to prevent the problem on the electronic, as well as to increase our 

knowledge on the generation and features of EMP, it is important to map the fields generated 

around the target. Since the experimental determination of the electromagnetic field distribution 

is limited by the number of employed antennas, a mapping of such electromagnetic fields 

should be completed with numerical simulations. In this contribution we focus our attention on 

the resonant features of the EMP and we report on a first attempt of target chamber mapping by 

measurements of magnetic fields by two B-probes and simulations using COMSOL 

Multiphysics 5.2. The EMP detected experimentally at the Rutherford Appleton Laboratory 

employing Vulcan petawatt laser, and at PALS Laboratory using PALS ns-class and TiSa fs-

class lasers, are presented and supported by simulations.  

2. Theory, simulations and measurements at PALS 

The 3-TW iodine laser at PALS Research Centre in Prague was focused with a focal spot 

diameter of ~80μm for plasma generation at the front side of a thick Cu target (T). The target 

chamber was a steel spherical chamber with a radius of 500 mm (Fig. 1 (a), 1 (b)) with a glass 

window allowing the laser beam with a diameter of 29 cm to enter in. An inductive target probe 

(T-probe) was mounted on the target-target holder system for detection of its current flowing to 

the ground [2] as well as B-probes were placed in the target chamber in different positions. The 

B-probes and T-probe were connected with a Tektronix TDS 694C- 3GHz, 10GS/s oscilloscope 

by flexible double shielded cables to decrease the level of environmental noise affecting it.  

The signals of B-probes last a few hundreds of nanoseconds and at the beginning they 

show a large positive or negative peak depending on the physical orientation of the probe with 

respect to the target-target holder system. 



 

          a)                b)  

 
Fig. 1. Picture of target chamber at PALS facility (a), and schematic top view (not in scale) of the target 

chamber with the applied positioning of B-probes B1 and B2 (b), T denotes target and red arrow marks 

the incident laser beam. 

 
Detected signals indicate that the temporal profile of the EMP is composed of a fast transient 

period followed by a longer quasi-stationary one due to the resonant behaviour of EMP inside 

the target chamber [6,7,8]. Since we can assume that the target chamber works as a resonant 

cavity, it is possible to predict theoretically this behaviour considering it in a first approximation 

as an ideal resonant cavity. The resonant frequency of a particular mode comes from a proper 

Maxwell’s equation solution satisfying the boundary conditions imposed by the cavity. When 

the walls of the cavity conduct perfectly, the electric and the magnetic fields must be 

perpendicular and parallel to the walls, respectively, over the entire surface where these fields 

are not zero. Using the lumped circuit approximation and the boundary conditions as reported in 

[9,10], we estimate for the target chamber at PALS facility, the fundamental resonant frequency 

is 262 MHz, as confirmed by simulations.  

The COMSOL Multiphysic 5.2 simulation [11] allows us to approximate very well the 

spatial distribution of the EM field resonating inside the PALS interaction chamber, however it 

is necessary to build a faithful geometry, while adding at least the main components such as the 

focussing lens, its metallic holder, metallic plate and the glass window, as well as all the 

boundary conditions must be fixed by the physical parameters in order to get a model as closer 

to the reality as possible. 

The simulation was based on the following equations of the oscillating wave inside the 

cavity (1) and of the impedance boundary conditions (2):  
 

(1)                                             ∇ 𝑋 𝜇𝑟
−1(∇ 𝑋 𝑬) − 𝑘0

2 (𝜀𝑟 −
𝑗𝜎

𝛿𝜀0
) 𝑬 = 0                 

 

(2)                                                 √
𝜇0𝜇𝑟

𝜀0𝜀𝑟−𝑗𝜎/𝛿
𝒏 𝑋 𝑯 + 𝑬 − (𝒏 ∙ 𝑬)𝒏 = 0 ,                            

 

where 𝜇𝑟 is the relative magnetic permeability, 𝜇0 the magnetic permeability in vacuum, E the 

electric field vector, 𝑘0 the wave number, j the imaginary unit, 𝜎 the electrical conductivity, 𝜀𝑟 

relative permittivity, 𝜀0 permittivity in  vacuum, n the unit vector perpendicular to the inside 

surface of the cavity (in this case the target chamber) and 𝛿 is the imaginary part of the complex 

angular frequency 𝑠 = 𝜔 − 𝑗𝛿 . 

The spatial distribution of the magnetic field inside a spherical cavity free of metal and 

glass objects is shown in Fig. 2b and the perturbed case by inserting the main items in, is shown 

in Fig. 2c. We want to stress that in this kind of simulation we get meaningful results only about 



 

the spatial distribution and not about the strength of the fields at different frequencies. The more 

realistic chamber structure causes a change in the magnetic field pattern compared to the ideal 

one shown in Fig. 2a and resonates at shifted frequencies as for example 287 MHz. Fig. 3 shows 

in more detail the distribution of the magnetic field flux density at this frequency. The 

simulation of the spatial distribution of the magnetic flux density in the target chamber 

demonstrates that the detected EMP strongly depends on the position and orientation of the B-

probe inside the interaction chamber.  
 

a)

 

b)

 
 

c)

 

 

Fig. 2. (a) The fundamental TM mode in an ideal spherical resonant cavity [7]; (b) The magnetic field of the 

simulated fundamental TM mode; the arrows indicate the magnetic field flux. (c) A distortion of the magnetic field in 

the target chamber filled by the metal plate, lens, metallic lens holder and window.  

 

a)          b)   

         c)           d)  
 

Fig. 3. (a) Simulation of the magnetic flux density distribution (presented in arbitrary units) in the target chamber for 

the resonant frequency of 287 MHz by inserting the metal plate, lens, metallic lens holder and window.(b)-(d) Top 

and sides projections of magnetic field inside the target chamber. 

 

The antenna signal is given by the Faraday Law, as follows:  

(3)     𝑈𝐵−𝑃 =  −
𝑑

𝑑𝑡
𝛷𝐵,   



 

where B is the magnetic flux through the surface whose boundary is the B-probe’s loop. Since 

we used the same B-probes throughout the experiment, the proportionality factor of the 

observed induced voltage to the derivative of the flux has been retained during the experiment. 

It allows us a direct comparison of signals from the B-probes placed elsewhere inside the 

chamber with corresponding values of 𝑑𝜙𝐵 𝑑𝑡⁄  calculated in those places. An example of the 

space distribution of  𝑑𝜙𝐵 𝑑𝑡⁄  calculated by the resonant frequency of 287 MHz is shown in 

Fig. 4.  

Although the B-probes can be placed on arbitrary positions, we positioned them around the 

target at the same height of the focal spot, and at a distance from it of ~35 cm and ~25 cm, 

respectively. The first B-probe, B1, was set at 10° with respect the laser beam direction on the 

left of the target and the second one, B2, at 45° on the right of the target (Fig. 1b). Each coil lies 

on the yz-plane.  

 

Fig. 4. Space distribution (in arbitrary units) of time derivative of the magnetic flux density calculated by the resonant 

frequency of 287 MHz in the interaction chamber equipped with basic items.  

 

After ten shots we compared all the spectra of the signals detected by B1 and B2 probes. 

The analysis shows clearly that only in the frequencies ranges centered in 460 and 780 MHz, the 

voltage induced in B1 is clearly higher than that induced in B2. Due to the limitation of 

oscilloscope acquisition, we analyzed the frequencies ranging from 400 to 510 MHz, and from 

720 to 860 MHz. We estimate how much the voltage induced on B2 is less than that induced in 

B1 in the range of frequencies considered and a comparison of the simulated and the 

experimental results was done. The simulation presented by the red line in Fig. 5 confirms the 

observation that the EM field varies strongly inside the interaction chamber with the position of 

observation, and that the induced voltage is weaker in the position B2 in comparison with B1. 

We do not achieve a full agreement of observed data with calculated ones because the 

simulation can hardly include all the details of all items located inside the interaction chamber. 

It is also evident that in the interaction chamber there are changes in potentials between 

different positions and times which are significant for the dynamics of charged particles. These 

changes are mainly given by the interior design of the interaction chamber.  
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Fig. 5. Comparison of observed (black line) and simulated (red line) attenuation of the spectrum in 

position B2 . 



 

3. EMP comparison between RAL and PALS experiments. 

At the Rutherford Appleton Laboratory the Vulcan petawatt laser beam was focused on a 10-m 

thin Au foil. The target chamber is a steel parallelepiped  with dimensions of 4.62.22 m
3
. The 

B-probe was placed in the target chamber to detect magnetic fields at a distance of 2 m from the 

target and the outputs were recorded through flexible double shielded cables by a Tektronix 

TDS 694C - 3 GHz, 10 GS/s oscilloscope. Our experimental results in terms of frequencies 

confirmed what was already obtained in [7]. Thus, here we focus our attention on the energy of 

EMP detected at RAL facility and at the PALS facilities both when the 500J, 350ps PALS laser 

and the 600mJ, 100fs TiSa laser were focused in different experiments on the same kind of thick 

Cu target inside the PALS chamber. Table 1 presents characteristics of the employed laser 

systems. 
 

Laser  Wavelength  Focus size  Pulse duration  Energy  

Vulcan  1053 nm  5.27 m 700 fs  200 - 400 J 

PALS  1315 nm  80 m  350 ps  200 - 500 J  

TiSa-PALS  808 nm  20 m  100 fs  0.6 J  

Table 1. Main parameters for Vulcan, PALS and TiSa-PALS lasers. 

 

Fig. 6a shows the EMP energy detected with the identical probes in experiments carried out 

at RAL and PALS facilities versus the energy delivered on targets. Fig. 6b shows the 

corresponding efficiency defined as the ratio absorbed EMP energy / Laser energy, which gives 

us the evaluation of the amount of laser energy which is converted into EMP energy detected by 

our B-probe. The efficiencies also exhibit shot-to-shot fluctuations both at PALS and Vulcan 

experiments. Nonetheless, the interaction of the 350-ps long pulse of the PALS laser system 

with the targets is affected by a number of instabilities which destabilize the conversion of laser 

energy into electron heating including the current flowing from the target to the ground which 

mainly contributes to the EMP emission [12,13]. It is evident that the interaction of the 500fs 

Vulcan pulse with target is more stable.  
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Fig. 6. (a) EMP energy versus laser energy measured at different facilities. (b) Efficiency of EMP generation 

measured at different facilities in %. 

 

The electromagnetic pulses observed during PALS and Vulcan experiments, are not 

only caused by various physical processes occurring in different time scales of interaction of 

300-ps and 0.7-ps laser pulses with thick and thin targets, resulting in different waveforms of 

ion fronts, and different gradients of electron temperature and density. The B-probe signals are, 

in fact, also influenced by the differences in shape and dimension of the interaction chambers, 



 

the fundamental resonant frequencies and corresponding Q-factors and last but not least the 

position of B-probes in the chambers. In Fig. 7 the simulated magnetic flux density is shown in 

the Vulcan target chamber for fundamental resonant frequencies: the dominant mode of a 

parallelepiped cavity as the Vulcan target chamber, is the TE mode; the simulations shown in 

Fig. 7 confirmed that the magnetic field resonates at the fundamental frequencies of 76, 82 and 

101 MHz which were obtained in [7]. The Q-factors at these resonant frequencies are 9.8810
4
, 

9.94 10
4 

and 12.8310
4
, respectively, while at PALS spherical target chamber, the simulation 

gave a Q-factor of 8.2110
4 
for the fundamental resonant frequency of 262 MHz (see Fig. 2b).  

 

a) 

 
 

b)  

 

c)  

 

 
Fig. 7. Fundamental resonant frequencies of 76MHz (a), 82MHz (b), 101MHz (c) of TE mode in Vulcan target 

chamber at the RAL Facility. The magnetic field vectors (red arrows) are shown. 

 

4. Conclusions 

We have carried out several key observations and simulations of the resonating electromagnetic 

field inside the target chamber which is a helpful tool to predict place-to-place variations in 

EMP spectra. Significant source of the EMP is the current flowing between the target and the 

ground which neutralizes a local charge on a target irradiated by a laser. The target holder 

behaves like an antenna [12] where the current oscillates up to the time of the total 

neutralization of ionized species moving through the interaction chamber [13]. Nevertheless, 

presented experiments and simulations show a substantial influence of the shape and size of the 

interaction chamber on the distribution of the EMP inside the chamber and its emission into the 

laboratory room. The energy efficiency of the EMP production is dependent on many factors 

rather than only on the focused laser intensity. Although it was an attempt to simulate only the 

magnetic fields resonating in the chamber, the results of the numerical simulations are in line 

with the experimental results, however they cannot completely describe the EMP spectra which 

are also affected to others factors. Nevertheless, a simple but important basis, for the prediction 

of EMP parameters and optimization of the diagnostic system design, is presented.  
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