176 research outputs found

    Bibliometrics analysis on the research status and trends of adult-onset Still’s disease: 1921-2021

    Get PDF
    ObjectivesThe aim of this research is to discuss the research status, hotspots, frontiers and development trends in the field of adult-onset Still’s disease (AOSD) based on bibliometrics and visual analysis by CiteSpace software.MethodsThe relevant research articles on AOSD from 1921 to 2021 were retrieved from the Scopus database. CiteSpace software was used to form a visual knowledge map and conduct analysis for the countries/regions, journals, authors, keywords, clusters, research hotspots and frontiers of the included articles.ResultsThere were 2,373 articles included, and the number of articles published during 1921-2021 is increasing. The country with the highest number of articles published was Japan (355, 14.96%), followed by the United States (329, 13.86%) and France (215, 9.06%). The author with the highest number of publications is Ansell, Barbara M. (30, 1.26%), and the author with the highest co-citation frequency is Yamaguchi, Masaya (703). Clinical Rheumatology is the journal with the highest publication frequency. The top five cluster groups were “joint”, “differential diagnosis”, “prednisolone”, “methotrexate” and “macrophage activation syndrome”. The diagnosis, treatment and pathogenesis of AOSD form the main research fields, and prognosis and complications are the research hotspots and trends.ConclusionsThe global research field in AOSD has expanded in the past 100 years. The complications and new pathogenesis of AOSD are hotspots in this field and need further study in the future

    A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana

    Get PDF
    The Hg-SYV46 parasitism gene is expressed exclusively in the dorsal oesophageal gland cell of parasitic stages of the soybean cyst nematode, Heterodera glycines, and it encodes a secretory protein that contains a C-terminal motif of the CLAVATA3/ESR-related (CLE) family in Arabidopsis thaliana. In shoot and floral meristems of Arabidopsis, the stem cells secret CLV3, a founding member of the CLE protein family, that activates the CLV1/CLV2 receptor complex and negatively regulates WUSCHEL expression to restrict the size of the stem cell population. Mis-expression of Hg-SYV46 in Arabidopsis (ecotype Columbia-0) under control of the CaMV35S promoter resulted in a wus-like phenotype including premature termination of the shoot apical meristem and the development of flowers lacking the central gynoecium. The wus-like phenotype observed was similar to reports of over-expression of CLV3 and CLE40 in Arabidopsis, as was down-regulation of WUS expression in the shoot apices of 35S::Hg-SYV46/Col-0 plants. Expression of 35S::Hg-SYV46 in a clv3-1 mutant of Arabidopsis was able partially or fully to rescue the mutant phenotype, probably dependent upon localization and level of transgene expression. A short root phenotype, as reported for over-expression of CLV3, CLE40 and CLE19 in roots, was also produced in primary 35S::Hg-SYV46/Col-0 transgenic plants. The results suggest a functional similarity of HG-SYV46 to plant-secreted CLE ligands that may play a role in the differentiation or division of feeding cells induced in plant roots by parasitic nematodes

    Dose-related liver injury of Geniposide associated with the alteration in bile acid synthesis and transportation.

    Get PDF
    Fructus Gardenia (FG), containing the major active constituent Geniposide, is widely used in China for medicinal purposes. Currently, clinical reports of FG toxicity have not been published, however, animal studies have shown FG or Geniposide can cause hepatotoxicity in rats. We investigated Geniposide-induced hepatic injury in male Sprague-Dawley rats after 3-day intragastric administration of 100 mg/kg or 300 mg/kg Geniposide. Changes in hepatic histomorphology, serum liver enzyme, serum and hepatic bile acid profiles, and hepatic bile acid synthesis and transportation gene expression were measured. The 300 mg/kg Geniposide caused liver injury evidenced by pathological changes and increases in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and Îł-glutamytransferase (Îł-GT). While liver, but not sera, total bile acids (TBAs) were increased 75% by this dose, dominated by increases in taurine-conjugated bile acids (t-CBAs). The 300 mg/kg Geniposide also down-regulated expression of Farnesoid X receptor (FXR), small heterodimer partner (SHP) and bile salt export pump (BSEP). In conclusion, 300 mg/kg Geniposide can induce liver injury with associated changes in bile acid regulating genes, leading to an accumulation of taurine conjugates in the rat liver. Taurocholic acid (TCA), taurochenodeoxycholic acid (TCDCA) as well as tauro-α-muricholic acid (T-α-MCA) are potential markers for Geniposide-induced hepatic damage

    Automated detection of MRI-negative temporal lobe epilepsy with ROI-based morphometric features and machine learning

    Get PDF
    Objective: Temporal lobe epilepsy (TLE) predominantly originates from the anteromedial basal region of the temporal lobe, and its prognosis is generally favorable following surgical intervention. However, TLE often appears negative in magnetic resonance imaging (MRI), making it difficult to quantitatively diagnose the condition solely based on clinical symptoms. There is a pressing need for a quantitative, automated method for detecting TLE.Methods: This study employed MRI scans and clinical data from 51 retrospective epilepsy cases, dividing them into two groups: 34 patients in TLE group and 17 patients in non-TLE group. The criteria for defining the TLE group were successful surgical removal of the epileptogenic zone in the temporal lobe and a favorable postoperative prognosis. A standard procedure was used for normalization, brain extraction, tissue segmentation, regional brain partitioning, and cortical reconstruction of T1 structural MRI images. Morphometric features such as gray matter volume, cortical thickness, and surface area were extracted from a total of 20 temporal lobe regions in both hemispheres. Support vector machine (SVM), extreme learning machine (ELM), and cmcRVFL+ classifiers were employed for model training and validated using 10-fold cross-validation.Results: The results demonstrated that employing ELM classifiers in conjunction with specific temporal lobe gray matter volume features led to a better identification of TLE. The classification accuracy was 92.79%, with an area under the curve (AUC) value of 0.8019.Conclusion: The method proposed in this study can significantly assist in the preoperative identification of TLE patients. By employing this method, TLE can be included in surgical criteria, which could alleviate patient symptoms and improve prognosis, thereby bearing substantial clinical significance

    Advanced Glycation End Products-Induced Activation of Keratinocytes: A Mechanism Underlying Cutaneous Immune Response in Psoriasis

    Get PDF
    Psoriasis is a common inflammatory skin disease, in which epidermal keratinocytes play a vital role in its pathogenesis by acting both as the responder and as the accelerator to the cutaneous psoriatic immune response. Advanced glycation end products (AGEs) are a class of proinflammatory metabolites that are commonly accumulating in cardiometabolic disorders. Recent studies have also observed the increased level of AGEs in the serum and skin of psoriasis patients, but the role of AGEs in psoriatic inflammation has not been well investigated. In the present study, we initially detected abnormal accumulation of AGEs in epidermal keratinocytes of psoriatic lesions collected from psoriasis patients. Furthermore, AGEs promoted the proliferation of keratinocytes via upregulated Keratin 17 (K17)-mediated p27KIP1 inhibition followed by accelerated cell cycle progression. More importantly, AGEs facilitated the production of interleukin-36 alpha (IL-36α) in keratinocytes, which could enhance T helper 17 (Th17) immune response. In addition, the induction of both K17 and IL-36α by AGEs in keratinocytes was dependent on the activation of signal transducer and activator of transcription 1/3 (STAT1/3) signaling pathways. At last, the effects of AGEs on keratinocytes were mediated by the receptor for AGEs (RAGE). Taken together, these findings support that AGEs potentiate the innate immune function of keratinocytes, which contributes to the formation of psoriatic inflammation. Our study implicates AGEs as a potential pathogenic link between psoriasis and cardiometabolic comorbidities

    Serial Monitoring of Circulating Tumor DNA in Patients With Metastatic Colorectal Cancer to Predict the Therapeutic Response

    Get PDF
    Early biomarkers of therapeutic responses can help optimize the treatment of metastatic colorectal cancers (mCRC). In this prospective exploratory study, we examined serial changes of plasma-circulating tumor DNA (ctDNA) in 41 mCRC patients receiving first-line chemotherapies and tested its association with treatment outcomes according to radiological assessments. Using next-generation sequencing technologies, we profiled somatic mutations in 50 cancer-related genes in ctDNA before each of the first four treatment cycles. We observed mutations in 95.7% of pre-treatment ctDNA samples. Using mutations of the maximal frequency in each pre-treatment plasma ctDNA sample as the candidate targets, we computed log2 fold changes of ctDNA levels between adjacent treatment cycles. We found that ctDNA reductions as early as prior to cycle 2 predicted responses after cycle 4. Log2 fold changes of ctDNA after cycle 1 (ctDNA log2 (C1/C0)) > −0.126 predicted progressive disease, with an accuracy of 94.6%. These patients also showed significantly worse progression-free survival than those with ctDNA log2 (C1/C0) ≀ −0.126 (median 2.0 vs. 9.0 months; P = 0.007). Together, the present exploratory study suggests that early changes in ctDNA levels detected via targeted sequencing are potential biomarkers of future treatment responses in mCRCs

    Development and Validation of an Effective CRISPR/Cas9 Vector for Efficiently Isolating Positive Transformants and Transgene-Free Mutants in a Wide Range of Plant Species

    Get PDF
    The CRISPR/Cas9 technique is a highly valuable tool in creating new materials for both basic and applied researches. Previously, we succeeded in effectively generating mutations in Brassica napus using an available CRISPR/Cas9 vector pKSE401, while isolation of Cas9-free mutants is laborious and inefficient. Here, we inserted a fluorescence tag (sGFP) driven by the constitutive 35S promoter into pKSE401 to facilitate a visual screen of mutants. This modified vector was named pKSE401G and tested in several dicot plant species, including Arabidopsis, B. napus, Fragaria vesca (strawberry), and Glycine max (soybean). Consequently, GFP-positive plants were readily identified through fluorescence screening in all of these species. Among these GFP-positive plants, the average mutation frequency ranged from 20.4 to 52.5% in Arabidopsis and B. napus with stable transformation, and was 90.0% in strawberry and 75.0% in soybean with transient transformation, indicating that the editing efficiency resembles that of the original vector. Moreover, transgene-free mutants were sufficiently identified in Arabidopsis in the T2 generation and B. napus in the T1 generation based on the absence of GFP fluorescence, and these mutants were stably transmissible to next generation without newly induced mutations. Collectively, pKSE401G provides us an effective tool to readily identify positive primary transformants and transgene-free mutants in later generations in a wide range of dicot plant species

    Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration

    Get PDF
    With the advance in material science and the need to diversify market applications, silver nanoparticles (AgNPs) are modified by different surface coatings. However, how these surface modifications influence the effects of AgNPs on human health is still largely unknown. We have evaluated the uptake, toxicity and pharmacokinetics of AgNPs coated with citrate, polyethylene glycol, polyvinyl pyrolidone and branched polyethyleneimine (Citrate AgNPs, PEG AgNPs, PVP AgNPs and BPEI AgNPs, respectively). Our results demonstrated that the toxicity of AgNPs depends on the intracellular localization that was highly dependent on the surface charge. BPEI AgNPs ( potential=+46.5mV) induced the highest cytotoxicity and DNA fragmentation in Hepa1c1c7. In addition, it showed the highest damage to the nucleus of liver cells in the exposed mice, which is associated with a high accumulation in liver tissues. The PEG AgNPs ( potential=-16.2mV) showed the cytotoxicity, a long blood circulation, as well as bioaccumulation in spleen (34.33 mu g/g), which suggest better biocompatibility compared to the other chemically modified AgNPs. Moreover, the adsorption ability with bovine serum albumin revealed that the PEG surface of AgNPs has an optimal biological inertia and can effectively resist opsonization or non-specific binding to protein in mice. The overall results indicated that the biodistribution of AgNPs was significantly dependent on surface chemistry: BPEI AgNPs>Citrate AgNPs=PVP AgNPs>PEG AgNPs. This toxicological data could be useful in supporting the development of safe AgNPs for consumer products and drug delivery applications

    Analysis of Inducible Nitric Oxide Synthase Gene Polymorphisms in Vitiligo in Han Chinese People

    Get PDF
    Background: Vitiligo is a chronic depigmented skin disorder with regional melanocytes depletion. The pathogenesis was not completely clarified. Recently, more and more evidence suggested that polymorphisms of some genes are associated with vitiligo risk. Here, we want to examine the association between the inducible nitric oxide synthase (iNOS) gene polymorphisms and the risk of vitiligo in Chinese populations. Methods and Principal Findings: In a hospital-based case-control study of 749 patients with vitiligo and 763 age- and sexmatched healthy controls, three polymorphisms of iNOS gene were genotyped by using the PCR-restriction fragment length polymorphism (PCR-RFLP) and mutagenically separated PCR (MS-PCR) methods, respectively. We found the iNOS-954 polymorphism was associated with a significantly higher risk of vitiligo (adjusted OR = 1.36, 95 % CI = 1.02–1.81). Furthermore, this association is more pronounced in vulgaris vitiligo, active vitiligo and vitiligo without other autoimmune diseases in the stratification study. Analysis of haplotypes showed increased risk for the C-1173C-954CEx16+14 (OR = 1.44, 95% CI = 1.01–1.74). In addition, the serum iNOS activity is significantly associated with iNOS-954 combined genotype (GC+CC) and is much higher in vitiligo patients than in the controls (P,0.01). Logistic regression analysis of iNOS activity showed increased risk between higher activity and iNOS-954 GRC variant genotype carriers (Ptrend,0.001). Conclusions and Significance: INOS gene polymorphisms may play an important role in the genetic susceptibility to th
    • 

    corecore