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Early biomarkers of therapeutic responses can help optimize the treatment of metastatic
colorectal cancers (mCRC). In this prospective exploratory study, we examined serial
changes of plasma-circulating tumor DNA (ctDNA) in 41 mCRC patients receiving first-
line chemotherapies and tested its association with treatment outcomes according to
radiological assessments. Using next-generation sequencing technologies, we profiled
somatic mutations in 50 cancer-related genes in ctDNA before each of the first four
treatment cycles. We observed mutations in 95.7% of pre-treatment ctDNA samples.
Using mutations of the maximal frequency in each pre-treatment plasma ctDNA sample
as the candidate targets, we computed log2 fold changes of ctDNA levels between
adjacent treatment cycles. We found that ctDNA reductions as early as prior to
cycle 2 predicted responses after cycle 4. Log2 fold changes of ctDNA after cycle 1
(ctDNA log2 (C1/C0)) > −0.126 predicted progressive disease, with an accuracy of
94.6%. These patients also showed significantly worse progression-free survival than
those with ctDNA log2 (C1/C0) ≤ −0.126 (median 2.0 vs. 9.0 months; P = 0.007).
Together, the present exploratory study suggests that early changes in ctDNA
levels detected via targeted sequencing are potential biomarkers of future treatment
responses in mCRCs.

Keywords: liquid biopsy, circulating tumor DNA, metastatic colorectal cancer, therapeutic response, biomarker

Abbreviations: AUC, area under curve; CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; CR, complete
response; CRC, colorectal cancer; CT, computed tomography; ctDNA, circulating tumor DNA; mCRC, metastatic colorectal
cancer; NGS, next-generation sequencing; PBLs, peripheral blood lymphocytes; PD, progressive disease; PR, partial response;
RECIST, Response Evaluation Criteria in Solid Tumors; ROC, receiver operating characteristic; SD, stable disease; tDNA,
tissue DNA.
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HIGHLIGHTS

- Mutations in pretreatment ctDNA were detected in 95.7%
mCRC via targeted sequencing.

- Early changes in ctDNA could predict future radiologically
assessed responses in mCRC.

- Early biomarkers of therapeutic responses could help optimize
the treatment.

INTRODUCTION

Colorectal cancer is the third most common cancer in the world,
and ranks second in terms of mortality (Bray et al., 2018).
Advances in systemic therapies have significantly improved the
survival of patients with mCRC (Fakih, 2015; Van Cutsem et al.,
2016; McQuade et al., 2017), and new treatment options are
emerging in refractory mCRC (Le et al., 2015; Sartore-Bianchi
et al., 2016b). However, there is a high variability of thera-
peutic responses among patients and determining the optimal
personalized treatment plan is challenging. Predictive biomarkers
of treatment outcomes and disease progression are of great values
in clinical decision-making that enables early assessment of
treatment responses and choice of alternative therapies to avoid
unnecessary side effects, enhance efficacy, and minimize costs.

Conventional monitoring is primarily based on imaging
and measurements of traditional serum tumor markers, e.g.,
CEA and CA19-9, as suggested in the RECIST. However,
radiation exposure, costs, logistics and operational constraints
limit the frequency with which CT scans can be performed.
Therefore, radiological assessments are usually not conducted
until about two months after starting treatments, which
may delay the selection of alternative therapies for patients
unresponsive to first-line treatments. Furthermore, some lesions
are immeasurable on CT scans, and new lesions that appear on
serial CT scans are commonly due to non-neoplastic causes or
a different cancer. The biologic agents that have been widely
used in recent years may cause lesions to form tumoral cavities
(Chun et al., 2009; Kawasaki et al., 2016), which are signs
of efficacy, but the tumor sizes could become even bigger.
Serum tumor markers can be assayed more frequently, but their
sensitivity and specificity are low (Bast et al., 2001; Goldstein and
Mitchell, 2005). Transient therapy-related surges in serum tumor
markers, such as CEA, have been reported (Sorbye and Dahl,
2003; Mundle et al., 2013). Another limitation is that neither
methods can provide genetic information describing the intrinsic
characteristics of each tumor. Therefore, it is necessary to find
a more accurate and minimally invasive biomarker to monitor
tumor progression on a frequent basis.

Circulating tumor DNA (ctDNA) can be obtained less
invasively than tumor biopsies. Quantification of ctDNA levels
and somatic mutations provide real-time information of the
highly dynamic tumor characteristics (Diehl et al., 2008). Several
studies have suggested that postoperative ctDNA detection helps
identify CRC patients who are at a high risk of relapse (Kidess
et al., 2015; Reinert et al., 2016; Zhou et al., 2016; Ng et al., 2017).
ctDNA has also been proved useful in studying the molecular
mechanism for secondary resistance to anti-epidermal growth

factor receptor (EGFR) treatment (Morelli et al., 2015; Siravegna
et al., 2015; Takegawa et al., 2016). Recently, several investigations
reported that early changes of ctDNA are associated with
treatment responses in mCRC patients (Tie et al., 2015; Garlan
et al., 2017; Thomsen et al., 2018) However, in these studies,
candidate targets were selected based on mutations detected in
tumor tissues at the time of initial diagnosis, which might be
unreasonable due to cancers’ spatial and temporal heterogeneity.
Furthermore, two of the three studies focused on ctDNA levels
during the first one or two cycles of treatments (Tie et al., 2015;
Garlan et al., 2017), and whether ctDNA changes in later cycles
can improve the predictive accuracy of long-term prognosis is
worth further exploration.

To study the predictive value of ctDNA changes before
radiological assessments, we conducted a prospective study that
screened mutations in a panel of 50 cancer-related genes in
plasma ctDNA collected at multiple time points that covered pre-
treatment and each of the four cycles of the first-line systematic
treatment of mCRC. Our analysis showed that early changes in
ctDNA levels detected via targeted sequencing might potentially
predict future treatment responses in mCRCs.

MATERIALS AND METHODS

Patients and Sample Collection
This prospective study recruited patients with mCRC who were
treated at Peking Union Medical College Hospital between 2015
and 2017. CRC was pathologically confirmed in eligible patients,
and they were set to receive standard first-line chemotherapy
using FOLFOX or FOLFIRI, with or without targeted therapy
every two weeks. Treatment continued until the establishment
of PD or until the completion of 12 cycles of treatment
followed by maintenance with capecitabine when the disease was
considered PR or SD.

Serial blood samples were collected at the following four
defined time-points: pretreatment (within seven days before
commencing cycle 1 treatment, named C0) and prior to cycles
2, 3, and 4 of treatments (within three days before commencing
the next cycle of treatment, named C1, C2, and C3, respectively).
At each time point, traditional serum tumor markers (CEA and
CA19-9) were measured and ctDNA analysis was performed.
CT scans of the chest, abdomen, and pelvis were performed at
baseline and after four cycles of therapy (usually 8–10 weeks
after starting treatment). These scans were assessed by a single
radiologist, and disease status was evaluated as CR, PR, SD, or PD
according to RECIST version1.1.

The study was approved by the human research ethics
committee of PUMCH, and all patients provided written
informed consent.

Sample DNA Preparation
Peripheral blood was collected in ethylenediaminetetraacetic
acid (EDTA) tubes and centrifuged for 10 min at 1,600 × g
at 4◦C within 2 h of collection. The cell pellets containing
PBLs were stored at −20◦C until further use. The supernatants
were further centrifuged at 16,000 × g for 10 min, and
plasma was harvested and stored at −80◦C until needed. DNA
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was extracted from PBLs using the E.Z.N.A. Blood DNA kit
(Omega Bio-Tek, Norcross, GA, United States), and ctDNA
was extracted from plasma using the QIAamp Circulating
Nucleic Acid kit (QIAGEN, Hilden, Germany) following the
manufacturers’ instructions, respectively. DNA was quantified
with the Qubit 2.0 Fluorometer and the Qubit dsDNA HS Assay
kit (Thermo Fisher Scientific, Waltham, MA, United States)
according to the recommended protocol.

Ion PGM Library Preparation
and Sequencing
The Ion Proton library and DNA sequencing were generated
with the Ion AmpliSeq Library Kit 2.0 (Thermo Fisher Scientific,
Waltham, MA, United States) according to the manufacturer’s
instructions. We used the SV-CA50-ctDNA panel (San Valley
Biotech Inc., Beijing, China), which is capable of detecting
somatic mutations from plasma samples in 50 cancer-related
genes (Guo et al., 2016). Each sample was sequenced with a
minimum depth of 10,000×.

Circulating Tumor DNA Analysis
To determine the minimum variant frequency threshold,
the Standard HD780 (Horizon Discovery, Cambridge,
United Kingdom) with 100% KRAS G12D, NRAS Q61K,
NRAS A59T, and PIK3CA E545K mutations were used as
positive controls, and the negative control was wild-type
Standards of these positions. These Standards were mixed in
0, 0.5, and 1% proportions of mutation reference standards.
Every proportion of reference standard was sequenced 10 times
with 10,000× sequencing depth. Supplementary Figure S1
showed the detected mutation frequencies for each of the
reference samples. We determined that the detection limit of our
sequencing method was 0.5%, which corresponded to a complete
separation of positive controls and negative controls.

Initial data from the PGM runs was processed with the
Ion PGM platform-specific pipeline software Torrent Suite to
generate sequence reads, trim adapter sequences, and filter
and remove poor signal-profile reads. Variant calling from the
sequencing data was initially generated using Torrent Suite
Software v5.0 with a plug-in “variant caller v5.0” program. Four
filtering steps were then used to eliminate erroneous base calling
and generate final variant calling (Guo et al., 2016). For the
first filter, the following parameters were defined for plasma
ctDNA: average total coverage depth > 10,000; each variant
coverage > 10; a variant frequency of each sample > 0.5%; and
p-value < 0.01. The second filtering step utilized Integrative
Genomics Viewer (IGV) software1 or Samtools software2 to
eliminate possible DNA strand-specific errors after a visual
examination of the called mutations. The third filtering step
set variants within the 2,855 mutational hotspots according to
the manufacturer’s instructions. The final filtering step involved
comparing the PBLs to eliminate germ-line mutations.

All ctDNA analyses were performed by individuals blinded to
the results of CEA, Ca19-9 and radiological responses. ctDNA
levels were quantified as the fraction of mutant alleles.

1http://www.broadinstitute.org/igv
2http://samtools.sourceforge.net

Statistical Analysis
Descriptive statistics were used to assess the clinical variables and
the frequencies of mutations in pretreatment ctDNA. For each
patient, the mutation of the maximal frequency in the pre-
treatment plasma ctDNA sample was selected as the candidate
target for analysis. We used the log2 fold-change as the indicators
of changes in ctDNA, CEA, and CA19-9 levels after each cycle
of treatment. For example, ctDNA log2 (C1/C0) refers to the
change in the ctDNA level after the first cycle of treatment,
with C0 and C1 as the ctDNA levels prior to cycle 1 and cycle
2, respectively. Patient clinical status determined by imaging
diagnoses at the end of the fourth treatment cycle was used as
the treatment responses. The Mann–Whitney U-test was used
to assess the differences in the changes in ctDNA, CEA, and
CA19-9 between groups of patients with different responses (i.e.,
PD vs. non-PD). ROC curves and the Z test for the AUC were
used to determine the predictive ability of blood biomarkers
(changes in ctDNA, CEA, and CA19-9 levels after treatment)
for differentiating patients with PD and patients with non-PD
at the end of the fourth cycle. The cutoff values were estimated
at various sensitivities and specificities and were determined at
the maximum Youden’s index. ROC curves were compared with
the method of DeLong et al. Survival curves were drawn with
the Kaplan–Meier method and compared with the log-rank test.
Progression-free survival (PFS) was defined as the time elapsed
from the first cycle of treatment until the date of first progression
or death (all causes).

The statistical analyses were performed using SPSS
Statistics version 19 (IBM Corp), GraphPad Prism version
6.01 (GraphPad Software, Inc., CA), and MedCalc Statistical
Software version 15.2 (MedCalc software bvba, Ostend,
Belgium). A two-tailed P value less than 0.05 was considered
statistically significant.

RESULTS

Patient Characteristics
Between April 2015 and October 2017, 47 patients were enrolled.
All patients had at least one baseline blood draw. Mutations
in pretreatment (C0) plasma ctDNA were detectable in 45
(95.7%) patients. After excluding four patients who didn’t meet
the inclusion criteria, one patient whose later blood samples
were not collected and one patient with no detectable ctDNAs,
a total of 41 patients entered the study for ctDNA serial
monitoring. Figure 1 summarizes the workflow of the study,
including the reasons for exclusion from further analysis. The
demographic and clinical characteristics of the 41 patients
are shown in Figure 2. The median age was 62.0 (28.0–
79.0) years old.

Sequence Coverage Analysis
With the Ion PGM
We examined the qualities of PGM reads on sequence lengths,
phred scores, GC contents and coverage depths (Supplementary
Figure S2). Because reads shorter than 60 bps or longer than 160
bps showed low phred scores and large variations of GC contents,
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FIGURE 1 | Workflow of the study.

they were removed from further analysis. The remaining 2.5 M
reads accounted for 97.64% of the total reads and have an average
length of 106 bps, an average GC content of 50% and an average
depth of 10,000.

Pretreatment ctDNA Mutations
The frequencies of mutations in pretreatment ctDNA of the 41
patients are illustrated in Supplementary Figure S3. The three
most frequently mutated genes included TP53 (70.73%), KRAS
(53.66%), and APC (48.78%). The frequencies of two other
commonly studies genes, NRAS and BRAF mutations were 2.44
and 7.32% respectively.

The mutation of the maximal frequency in pre-treatment
plasma ctDNA was selected as each patient’s candidate mutation
for further analysis. The candidate mutations of the 41
serially monitored patients were illustrated in Figure 2.
The median frequency of pretreatment candidate mutations
was 7.95% (0.52–76.82%).

Concordance of RAS Mutation Between
Tumor Tissues and Matched Plasma
ctDNA Samples
Twenty-five of the 41 patients had results of tumoral RAS
status determined by NGS platform-Ion Torrent PGM. Twenty-
four tumor tissue samples were from primary tumors, and one
sample was from liver metastasis. We used RAS mutations
detected in matched tumor tissues and plasma samples to
assess the concordance. Based on amino acid substitutions, the
concordance of the RAS status between the matched plasma
and tissue from each patient was observed in 24 of 25 cases.
RAS mutations detected in each sample was summarized in
Supplementary Tables S1, S2. Notably, patient No. 1 who was
diagnosed with right-side colon cancer with a KRAS G13D
mutation and sigmoid colon cancer with a KRAS G12V mutation
in tumor tissues suffered from synchronous liver metastases. We
detected both KRAS G13D and G12V mutations in her plasma
sample (2.05 and 0.92%, respectively, Supplementary Table S2).
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FIGURE 2 | Characteristics and candidate mutations of the 41 patients who were eligible for serial monitoring of circulating tumor DNA (ctDNA). Mutation of the
maximal frequency in pretreatment ctDNA was selected as each patient’s candidate mutation. Early metachronous metastasis meant metastasis diagnosed within
12 months of the primary diagnosis.

Changes in ctDNA Levels Distinguish
Patients With Different Responses
Earlier Than Changes in CEA and
CA19-9 Levels
Imaging after four cycles of treatment showed 6 PD cases and
35 non-PD cases (17 PR and 18 SD). We compared the changes
in the candidate mutations in plasma ctDNA and traditional
serum markers after the first (C1), second (C2), and third (C3)
cycles of treatment between the non-PD group and the PD
group. The ctDNA levels decreased and increased in the non-
PD and PD groups, respectively. Significant differences were
observed in the changes in the ctDNA levels between the two
groups after the first, second, and third cycles (Figure 3A).
However, when comparing the changes in CEA and CA199
levels between the two groups, a significant difference was only
observed after the third cycle of treatment (Figures 3B,C). These
results suggested that changes in ctDNA levels could differentiate
patients with PD earlier than changes in CEA and CA199 levels
by approximately four weeks.

Predictive Ability of Blood Biomarkers to
Distinguish Patients With PD and
Non-PD Responses
Next, we examined the predictive ability of serial changes in
ctDNA, CEA, and CA19-9 to identify patients with different
responses. Table 1 shows the results of the ROC curve analysis,
including the AUC, P value, and optimal cutoff points, for
the above blood biomarkers to distinguish patients with PD
from those with non-PD. As illustrated in Table 1, all the
changes in ctDNA between C0 and C1, C2 and C3 were
significantly associated with radiologic responses, and there were
no statistical differences between the areas under the three ROC
curves. For CEA and CA19-9, only changes from pretreatment
to immediately before cycle 4 had the potential to predict
disease progression.

Prognostic Significance of the Changes
in ctDNA Between C0 and C1 for
Progression-Free Survival
From the above analysis, it could be seen that the changes
of ctDNA level from C0 to as early as C1 had a certain
predictive value of treatment response. The optimal criteria
for predicting PD after cycle 4, as determined by the ROC
curve, was ctDNA log2 (C1/C0) > −0.126 (Table 1). Patients
who met this criterion experienced significantly worse PFS
than those with log2 (C1/C0) values below the cutoff point
(median PFS, 2.0 v 9.0 months; P = 0.007; Figure 4). Patients
who met this criterion also experienced significantly worse
progression-free survival after the second cycle of treatment
(Supplementary Figure S4).

DISCUSSION

The goal of the present exploratory study was to assess the
potential role of the changes in ctDNA levels analyzed via
NGS in the early prediction of therapeutic efficacy in first-
line-treated mCRC. The results suggested that ctDNA was
detectable in a high proportion of systemic treatment-naïve
mCRC patients and that early changes in ctDNA was a potential
biomarker to predict later radiologically assessed responses
to mCRC treatment.

Targeted sequencing via NGS can identify hundreds of
mutations starting from a low DNA input (Normanno et al.,
2013). Plasma ctDNA represents a minimally invasive source
of tumor DNA for molecular profiling and has been shown
to be a reliable surrogate for genomic alterations in tumor
tissue (Diehl et al., 2008; Bettegowda et al., 2014). Our study
demonstrated that mutations in ctDNA could be detected
via NGS in 95.7% of systemic treatment-naïve mCRC cases.
For the mutation frequencies in plasma, the most commonly
mutated ctDNA genes were TP53, KRAS, and APC, which is
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FIGURE 3 | The differences in the changes in circulating tumor DNA (ctDNA), carcinoembryonic antigen (CEA), and carbohydrate antigen 19-9 (CA19-9) levels
between progressive disease (PD) and non-PD patients. Changes in ctDNA, CEA, and CA19-9 levels after the first, second, and third cycles of treatment are
illustrated in A–C, respectively.

TABLE 1 | Predictive values of the changes in ctDNA, CEA, and CA19-9 levels for the imaging responses of progression disease.

Cutoff Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

Variable AUC p value value (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

ctDNA log2 (C1/C0) 0.978 0.000 −0.126 100.0 (54.1–100.0) 93.5 (78.6–99.2) 75.0 (34.9–96.8) 100.0 (88.1–100.0) 94.6 (81.8–99.3)

ctDNA log2 (C2/C0) 0.954 0.004 −0.655 100.0 (39.8–100.0) 92.6 (75.7–99.1) 66.7 (22.3–95.7) 100.0 (86.3–100.0) 93.5 (78.6–99.2)

ctDNA log2 (C3/C0) 0.992 0.001 −0.471 100.0 (47.8–100.0) 96.0 (79.7–99.9) 83.3 (35.9–99.6) 100.0 (85.8–100.0) 96.7 (82.8–99.9)

CEA log2 (C1/C0) 0.683 0.198 −0.079 100.0 (47.8–100.0) 48.3 (29.5–67.5) 25.0 (8.7–49.1) 100.0 (76.8–100.0) 55.9 (37.9–72.8)

CEA log2 (C2/C0) 0.770 0.088 0.158 75.0 (19.4–99.4) 84.0 (63.9–95.5) 42.9 (9.9–81.6) 95.5 (77.2–99.9) 82.8 (64.2–94.2)

CEA log2 (C3/C0) 0.885 0.007 0.666 80.0 (28.4–99.5) 100.0 (86.8–100.0) 100.0 (39.8–100.0) 96.3 (81.0–99.9) 96.8 (83.3–99.9)

CA19-9 log2 (C1/C0) 0.738 0.093 0.523 60.0 (14.6–94.7) 100.0 (88.1–100.0) 100.0 (29.2–100.0) 93.5 (78.6–99.2) 94.1 (80.3–99.3)

CA19-9 log2 (C2/C0) 0.740 0.129 −0.556 100.0 (39.8–100.0) 52.0 (31.3–72.2) 25.0 (7.3–52.4) 100.0 (75.3–100.0) 58.6 (38.9–76.5)

CA19-9 log2 (C3/C0) 0.896 0.006 0.097 80.0 (28.4–99.5) 92.0 (74.0–99.0) 66.7 (22.3–95.7) 95.8 (78.9–99.9) 90.0 (73.5–97.9)

CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; C1/C0,
C2/C0, C3/C0, fold-change of levels after cycle 1, cycle 2 and cycle 3, respectively.

consistent with mutation profiling in tumor tissues or cell-free
DNA in patients with CRC (Cancer Genome Atlas Network,
2012; Strickler et al., 2018). The frequencies of RAS and BRAF
mutations in mCRC tumor tissues or ctDNA are reported to be
around 50% and 5–10%, respectively (Van Cutsem et al., 2016;
Gong et al., 2017; Strickler et al., 2018). Our frequencies of RAS
and BRAF mutations in ctDNA of mCRC were similar to those
reported in the literature.

We also confirmed the high concordance of ctDNA and
tumor tissues for RAS status. Many previous studies have
demonstrated the concordance of ctDNA and tDNA for the
molecular characterization of RAS and BRAF. Thierry et al.
(2014) found that ctDNA had a sensitivity of 92%, a specificity
of 98%, and a net accuracy of 96% for KRAS mutations in
mCRC patients. The prospective trial of Bachet et al. (2018)
enrolled 425 mCRC patients to compare plasma with tissue
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FIGURE 4 | Kaplan-Meier estimate for progression-free survival in metastatic
colorectal cancer patients with ctDNA log2 (C1/C0) ≤ –0.126 and ctDNA log2
(C1/C0) > –0.126 after the first cycle of treatment.

RAS analysis, and results demonstrated 94.8% accuracy in 329
patients with detectable ctDNA. Some researchers believe that
ctDNA represents the average tumor genome and may be a more
accurate approach for mutation identification (Sartore-Bianchi
et al., 2016a). In our study, ctDNA had a sensitivity of 93.3%,
a specificity of 100%, and a net accuracy of 96.0% for RAS
mutations compared with tumor tissue, which are comparable to
the results of the above studies.

The ability to perform non-invasive dynamic monitoring for
tumors has been a challenge for clinicians for many years. ctDNA
carries information on the tumor burden and has emerged as a
good candidate for tracking tumor dynamics in different cancers,
potentially circumventing the need for repeated tumor biopsies.
ctDNA measurements could be used to reliably monitor tumor
dynamics in subjects with CRC who are undergoing surgery or
chemotherapy (Diehl et al., 2008). The half-life of ctDNA is less
than 2 h (Diaz and Bardelli, 2014). ctDNA responds promptly
to treatments, and changes in its levels could be evident days
or weeks before tumor shrinkage can be assessed by imaging or
the emergence of obvious changes in traditional serum tumor
biomarkers. Serial profiling of ctDNA holds immense promise for
early and accurate detection of patient responses. For example,
in the studies of metastatic prostate cancer (Goodall et al., 2017)
and breast cancer (O’Leary et al., 2018), the results suggested that
early dynamic changes in ctDNA might be biomarkers for drug
efficacy prediction.

In metastatic CRC, there are a few previous studies focusing
on the value of early change in ctDNA for predicting therapeutic
responses (Tie et al., 2015; Garlan et al., 2017; Thomsen et al.,
2018). Tie et al. (2015) and Garlan et al. (2017) chose the
candidate mutations in ctDNA based on the mutations in
tumor tissue. Thomsen et al. (2018) only included patients
with RAS/RAF mutations and monitored dynamic changes in

circulating RAS/RAF mutations. Tie et al. found that a ten-fold
reduction of ctDNA after one cycle of therapy was associated
with good response, and Garlan et al. used slope of changes as
the marker of enriched response rates. Thomsen et al. suggested
that a low level of RAS/RAF mutations after the first cycle was
associated with a low risk of progression. Although all the above
results suggested that early dynamics in ctDNA was associated
with treatment responses, the research methods were different
and how to exploit this issue in the clinic remains unclear. Unlike
these studies, our investigation screened candidate mutations for
further analysis directly in baseline plasma by an NGS high-
throughput platform, which could reflect the real-time situation
of the biological characteristics of tumors more accurately
than monitoring candidate mutations chosen based on tissue
mutations at initial diagnosis. Furthermore, we analyzed the
changes in ctDNA, CEA, and CA19-9 after every cycle of
treatment before the first imaging evaluation. Later samples could
have added value. We compared the predictive ability of ctDNA
with conventional serum tumor markers in the prediction of
therapeutic response after each cycle of treatment. Our results
showed that changes in ctDNA could differentiate patients with
responses of PD earlier than changes in traditional serum tumor
markers by approximately one month. Although the predictive
power of changes in ctDNA after cycle 3 was slightly superior to
the previous two cycles in data of AUC and accuracy, there was
no statistically significant difference. CtDNA reductions as early
as prior to cycle 2 predicted the radiologic responses after cycle 4
with an accuracy of 94.6%. Our study also revealed significantly
worse PFS in patients with increased ctDNA levels. Thus, our
study added to growing evidence that serial ctDNA monitoring
showed the potential of early changes in ctDNA to predict later
tumor responses.

To the best of our knowledge, there are no reliable clinico-
pathological factors in the literature that could predict the
efficacy of chemotherapy in mCRC so far. We also analyzed
the relationship between the clinicopathological factors including
histology, chemotherapy regimen, number of metastases, etc.,
and early progression in this group of patients. However, no
clinical or pathological factors predicting responses were found
(data not shown). Our results of early changes in ctDNA levels
predicting future treatment responses are appealing because
detecting disease progression via non-invasive monitoring and
convenient markers is important in clinical practice to avoid
continuing ineffective therapies and prevent unnecessary side
effects. Nevertheless, our study has some limitations. This is
a single-center exploratory study with a small sample size.
Our data are insufficient to determine the optimal criteria for
assessing the ctDNA concentration after treatment, and larger
cohorts of patients are needed to draw robust conclusions and
to compare the impact on progression-free or overall survival of
changes in ctDNA levels. Although ctDNA helps detect disease
progression earlier, imaging is still necessary to determine the
anatomy and the respectability of tumor lesions. Therefore, it
is unlikely that ctDNA would completely replace imaging in
assessments of tumor burden. However, ctDNA analysis allows a
more comprehensive assessment of tumors, and the detection of
ctDNA is one of the most promising approaches for improving
tumor monitoring procedures in mCRC. Furthermore, if this
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method would be included in the clinical routine, it might alter
the timing of the imaging and change the exposure of patients to
inefficient treatment.

In summary, our data suggests that ctDNA mutations could
be detected in a high proportion of treatment-naïve mCRC
patients via NGS. Early changes in the ctDNA levels showed
the potential to predict later radiologic responses, and ctDNA
monitoring might be integrated with imaging to assess responses
to anticancer treatment in mCRC.
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