89 research outputs found

    M & L Jaargang 2/1

    Get PDF
    RedactioneelChris Bogaert, Kathleen Lanclus en Guido Deseyn Van winkelen en puien. [About shopping and shopfronts.]B. Baillieul, G. Van der Linden en H. Van den Bossche Het Citadelpark in Gent. [The Citadel Park in Ghent.]Guido Deseyn Geo Henderick. [Geo Henderick, profile of an architect.]Paul van den Bremt en Regi de Meirsman Een aanzet tot een beheersplan voor een gerangschikt landschap, het staatsbos Berlare-Broek. Luik I: de natuurwetenschappelijke waarde. [Toward a management plan for a protected landscape, the state forest of Berlare-Broek. Part I: scientific value.]M&L Binnenkran

    M & L Jaargang 11/4

    Get PDF
    Jo Braeken Scholen om te leren. [Schools for learning.]Greet Plomteux Het koninklijk Atheneum te Antwerpen. [The Royal Atheneum at Antwerp.]Mario Vanroy Het Sint-Romboutscollege te Mechelen. [The Saint Rombout college at Mechelen.]Greta Paesmans De 18de-eeuwse universitaire colleges te Leuven. [The 18th century university colleges at Leuven.]Jos Gyselinck - De gemeentescholen van Bocholt en Diepenbeek. [The municipal schools of Bocholt and Diepenbeek.]Guillaume Bollen Het Heilig Hartinstituut te Maasmechelen. [The Sacred Heart insitute at Maasmechelen.]Kathleen Lanclus Het voormalige gymnasium van de Jezuïeten in Gent. [The former Jesult gymnasium in Ghent.]Chris Bogaert Het Rommelaere instituut en de instituten van de Bijloke te Gent. [The Rommelaere institute and the institutes of the Bijloke at Ghent.]Jos Stroobants De rijksnormaalschool te Brugge. [The state normal school in Bruges.]Anne-Marie Delepiere en Martine Huys De wederopbouwscholen in de Westhoek. [The post-war reconstruction schools in the Westhoek.]Jo Braeken De gemeentenscholen nr. 1 en nr. 2 te Elsene. [The municipal schools nr. 1 and nr. 2 in Elsene (Brussels).]M&L Binnenkran

    Age at menarche in Canada: results from the National Longitudinal Survey of Children & Youth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Given the downward trend in age at menarche and its implications for the reproductive health and wellbeing of women, little is known about menarcheal age in Canada. Most Canadian studies are only representative of specific populations. The present study, therefore, aims to assess the distribution of age at menarche for Canadian girls and explore its variation across socio-economic and demographic factors.</p> <p>Methods</p> <p>The analysis of the study was based on all female respondents aged 14 to 17 years during Cycle 4 (2000/2001) of the National Longitudinal Survey of Children & Youth (NLSCY). The main outcome was age at menarche assessed as the month and year of the occurrence of the first menstrual cycle. Kaplan Meier was used to estimate the mean and median of age at menarche. Chi-square test was used to assess the differences in early, average and later maturers across the different levels of socio-economic and demographic variables. Bootstrapping was performed to account for the complex sampling design.</p> <p>Results</p> <p>The total number of girls analyzed in this study was 1,403 weighted to represent 601,911 Canadian girls. The estimated mean and median of age at menarche was 12.72 years (standard deviation = 1.05) and 12.67 years, respectively. The proportions of early (< 11.53 years), average (≥11.53 years and ≤13.91 years) and late maturers (> 13.91 years) were 14.6% (95% confidence interval (CI): 11.92-17.35), 68.0% (95% CI: 63.82-72.17) and 17.4% (95% CI: 14.10-20.63), respectively. Variations across the menarcheal groups were statistically significant for the province of residence, household income and family type.</p> <p>Conclusion</p> <p>The findings of the study pave the way for future Canadian research. More studies are warranted to understand menarcheal age in terms of its variation across the provinces, the secular trend over time and its potential predictors.</p

    The number of tree species on Earth

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness. Please note an (erratum/corrigendum) for this article is available via https://www.pnas.org/doi/10.1073/pnas.220278411

    Consistent patterns of common species across tropical tree communities

    Get PDF
    D.L.M.C. was supported by the London Natural Environmental Research Council Doctoral Training Partnership grant (grant no. NE/L002485/1). This paper developed from analysing data from the African Tropical Rainforest Observatory Network (AfriTRON), curated at ForestPlots.net. AfriTRON has been supported by numerous people and grants since its inception. We sincerely thank the people of the many villages and local communities who welcomed our field teams and without whose support this work would not have been possible. Grants that have funded the AfriTRON network, including data in this paper, are a European Research Council Advanced Grant (T-FORCES; 291585; Tropical Forests in the Changing Earth System), a NERC standard grant (NER/A/S/2000/01002), a Royal Society University Research Fellowship to S.L.L., a NERC New Investigators Grant to S.L.L., a Philip Leverhulme Award to S.L.L., a European Union FP7 grant (GEOCARBON; 283080), Leverhulme Program grant (Valuing the Arc); a NERC Consortium Grant (TROBIT; NE/D005590/), NERC Large Grant (CongoPeat; NE/R016860/1) the Gordon and Betty Moore Foundation the David and Lucile Packard Foundation, the Centre for International Forestry Research (CIFOR), and Gabon’s National Parks Agency (ANPN). This paper was supported by ForestPlots.net approved Research Project 81, ‘Comparative Ecology of African Tropical Forests’. The development of ForestPlots.net and data curation has been funded by several grants, including NE/B503384/1, NE/N012542/1, ERC Advanced Grant 291585—‘T-FORCES’, NE/F005806/1, NERC New Investigators Awards, the Gordon and Betty Moore Foundation, a Royal Society University Research Fellowship and a Leverhulme Trust Research Fellowship. Fieldwork in the Democratic Republic of the Congo (Yangambi and Yoko sites) was funded by the Belgian Science Policy Office BELSPO (SD/AR/01A/COBIMFO, BR/132/A1/AFRIFORD, BR/143/A3/HERBAXYLAREDD, FED-tWIN2019-prf-075/CongoFORCE, EF/211/TREE4FLUX); by the Flemish Interuniversity Council VLIR-UOS (CD2018TEA459A103, FORMONCO II); by L’Académie de recherche et d’enseignement supérieur ARES (AFORCO project) and by the European Union through the FORETS project (Formation, Recherche, Environnement dans la TShopo) supported by the XIth European Development Fund. EMV was supported by fellowship from the CNPq (Grant 308543/2021-1). RAPELD plots in Brazil were supported by the Program for Biodiversity Research (PPBio) and the National Institute for Amazonian Biodiversity (INCT-CENBAM). BGL post-doc grant no. 2019/03379-4, São Paulo Research Foundation (FAPESP). D.A.C. was supported by the CCI Collaborative fund. Plots in Mato Grosso, Brazil, were supported by the National Council for Scientific and Technological Development (CNPq), PELD-TRAN 441244/2016-5 and 441572/2020-0, and Mato Grosso State Research Support Foundation (FAPEMAT)—0346321/2021. We thank E. Chezeaux, R. Condit, W. J. Eggeling, R. M. Ewers, O. J. Hardy, P. Jeanmart, K. L. Khoon, J. L. Lloyd, A. Marjokorpi, W. Marthy, H. Ntahobavuka, D. Paget, J. T. A. Proctor, R. P. Salomão, P. Saner, S. Tan, C. O. Webb, H. Woell and N. Zweifel for contributing forest inventory data. We thank numerous field assistants for their invaluable contributions to the collection of forest inventory data, including A. Nkwasibwe, ITFC field assistant.Peer reviewe

    Genome-wide association for milk production and lactation curve parameters in Holstein dairy cows

    Get PDF
    The aim of this study was to identify genomic regions associated with 305-day milk yield and lactation curve parameters on primiparous (n = 9,910) and multiparous (n = 11,158) Holstein cows. The SNP solutions were estimated using a weighted single-step genomic BLUP approach and imputed high-density panel (777k) genotypes. The proportion of genetic variance explained by windows of 50 consecutive SNP (with an average of 165 Kb) was calculated, and regions that accounted for more than 0.50% of the variance were used to search for candidate genes. Estimated heritabilities were 0.37, 0.34, 0.17, 0.12, 0.30 and 0.19, respectively, for 305-day milk yield, peak yield, peak time, ramp, scale and decay for primiparous cows. Genetic correlations of 305-day milk yield with peak yield, peak time, ramp, scale and decay in primiparous cows were 0.99, 0.63, 0.20, 0.97 and -0.52, respectively. The results identified three windows on BTA14 associated with 305-day milk yield and the parameters of lactation curve in primi- and multiparous cows. Previously proposed candidate genes for milk yield supported by this work include GRINA, CYHR1, FOXH1, TONSL, PPP1R16A, ARHGAP39, MAF1, OPLAH and MROH1, whereas newly identified candidate genes are MIR2308, ZNF7, ZNF34, SLURP1, MAFA and KIFC2 (BTA14). The protein lipidation biological process term, which plays a key role in controlling protein localization and function, was identified as the most important term enriched by the identified genes

    Expert-based development of a generic HACCP-based risk management system to prevent critical negative energy balance in dairy herds

    No full text
    The objective of this study was to develop a generic risk management system based on the Hazard Analysis and Critical Control Point (HACCP) principles for the prevention of critical negative energy balance (NEB) in dairy herds using an expert panel approach. In addition, we discuss the advantages and limitations of the system in terms of implementation in the individual dairy herd. For the expert panel, we invited 30 researchers and advisors with expertise in the field of dairy cow feeding and/or health management from eight European regions. They were invited to a Delphi-based set-up that included three inter-correlated questionnaires in which they were asked to suggest risk factors for critical NEB and to score these based on 'effect' and 'probability'. Finally, the experts were asked to suggest critical control points (CCPs) specified by alarm values, monitoring frequency and corrective actions related to the most relevant risk factors in an operational farm setting. A total of 12 experts (40 %) completed all three questionnaires. Of these 12 experts, seven were researchers and five were advisors and in total they represented seven out of the eight European regions addressed in the questionnaire study. When asking for suggestions on risk factors and CCPs, these were formulated as 'open questions', and the experts' suggestions were numerous and overlapping. The suggestions were merged via a process of linguistic editing in order to eliminate doublets. The editing process revealed that the experts provided a total of 34 CCPs for the 11 risk factors they scored as most important. The consensus among experts was relatively high when scoring the most important risk factors, while there were more diverse suggestions of CCPs with specification of alarm values and corrective actions. We therefore concluded that the expert panel approach only partly succeeded in developing a generic HACCP for critical NEB in dairy cows. We recommend that the output of this paper is used to inform key areas for implementation on the individual dairy farm by local farm teams including farmers and their advisors, who together can conduct herd-specific risk factor profiling, organise the ongoing monitoring of herd-specific CCPs, as well as implement corrective actions when CCP alarm values are exceeded

    Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission

    Get PDF
    NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (similar to 25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available

    The number of tree species on Earth

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global groundsourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are 73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness
    corecore