161 research outputs found

    Effect of decreasing dietary crude protein on growth performance, feed efficiency and meat quality of finishing Charolais bulls

    Get PDF
    This study aimed to evaluate the effect of decreasing dietary crude protein (CP) on the performance of finishing Charolais bulls in the Italian rearing system. Animals were fed two diets, differing only in the CP level (low protein (LP), 13.5% CP versus control (CON), 15.0% CP). Dry matter (DM) intake (DMI) and animals\u2019 weights were recorded to obtain average daily gain (ADG) and feed conversion rate (FCR). Feed and fecal samples were collected to evaluate digestibility of diet components. Daily cost of the ration (DRC), feed cost per kg of daily weight gain (CDG) and daily gross margin (DGM) were calculated to analyze the possible benefits of decreasing the protein level. Meat quality analyses were also conducted. Higher DMI (10.6 versus 10 kg/d; p < 0.05) and ADG (1.47 versus 1.36 kg/d; p < 0.05) were observed for CON. No differences in FCR or digestibility were found. Even if the DRC was lower (p < 0.05) for the LP diet (2.26 versus 1.97 \u20ac; CON versus LP), no difference was reported for CDG and DGM. Meat lightness and redness were significantly lower and higher in the LP, respectively. To conclude, the CP requirement in these rearing conditions appeared to be higher than 13.5%

    Antigen Retrieval and Its Effect on the MALDI-MSI of Lipids in Formalin-Fixed Paraffin-Embedded Tissue

    Get PDF
    Formalin-fixed paraffin-embedded (FFPE) tissue represents the primary source of clinical tissue and is routinely used in MALDI-MSI studies. However, it is not particularly suitable for lipidomics imaging given that many species are depleted during tissue processing. Irrespective, a number of solvent-resistant lipids remain, but their extraction may be hindered by the cross-link between proteins. Therefore, an antigen retrieval step could enable the extraction of a greater number of lipids and may provide information that is complementary to that which can be obtained from other biomolecules, such as proteins. In this short communication, we aim to address the effect of performing antigen retrieval prior to MALDI-MSI of lipids in FFPE tissue. As a result, an increased number of lipid signals could be detected and may have derived from lipid species that are known to be implicated in the lipid-protein cross-linking that is formed as a result of formalin fixation. Human renal cancer tissue was used as a proof of concept to determine whether using these detected lipid signals were also able to highlight the histopathological regions that were present. These preliminary findings may highlight the potential to enhance the clinical relevance of the lipidomic information obtained from FFPE tissue

    In-Depth Mapping of the Urinary N-Glycoproteome: Distinct Signatures of ccRCC-related Progression

    Get PDF
    Protein N-glycosylation is one of the most important post-translational modifications and is involved in many biological processes, with aberrant changes in protein N-glycosylation patterns being closely associated with several diseases, including the progression and spreading of tumours. In light of this, identifying these aberrant protein glycoforms in tumours could be useful for understanding the molecular mechanism of this multifactorial disease, developing specific biomarkers and finding novel therapeutic targets. We investigated the urinary N-glycoproteome of clear cell renal cell carcinoma (ccRCC) patients at different stages (n = 15 at pT1 and n = 15 at pT3), and of non-ccRCC subjects (n = 15), using an N-glyco-FASP-based method. Using label-free nLC-ESI MS/MS, we identified and quantified several N-glycoproteins with altered expression and abnormal changes affecting the occupancy of the glycosylation site in the urine of RCC patients compared to control. In particular, nine of them had a specific trend that was directly related to the stage progression: CD97, COCH and P3IP1 were up-expressed whilst APOB, FINC, CERU, CFAH, HPT and PLTP were down-expressed in ccRCC patients. Overall, these results expand our knowledge related to the role of this post-translational modification in ccRCC and translation of this information into pre-clinical studies could have a significant impact on the discovery of novel biomarkers and therapeutic target in kidney cancer

    Detecting Proteomic Indicators to Distinguish Diabetic Nephropathy from Hypertensive Nephrosclerosis by Integrating Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging with High-Mass Accuracy Mass Spectrometry

    Get PDF
    Introduction: Diabetic nephropathy (DN) and hypertensive nephrosclerosis (HN) represent the most common causes of chronic kidney disease (CKD) and many patients progress to -end-stage renal disease. Patients are treated primarily through the management of cardiovas-cular risk factors and hypertension; however patients with HN have a more favorable outcome. A noninvasive clinical approach to separate these two entities, especially in hypertensive patients who also have diabetes, would allow for targeted treatment and more appropriate resource allocation to those patients at the highest risk of CKD progression. Meth-ods: In this preliminary study, high-spatial-resolution matrix-assisted laser desorption/ion-ization (MALDI) mass spectrometry imaging (MSI) was integrated with high-mass accuracy MALDI-FTICR-MS and nLC-ESI-MS/MS analysis in order to detect tissue proteins within kidney biopsies to discriminate cases of DN (n = 9) from cases of HN (n = 9). Results: Differences in the tryptic peptide profiles of the 2 groups could clearly be detected, with these becoming even more evident in the more severe histological classes, even if this was not evident with routine histology. In particular, 4 putative proteins were detected and had a higher signal intensity within regions of DN tissue with extensive sclerosis or fibrosis. Among these, 2 proteins (PGRMC1 and CO3) had a signal intensity that increased at the latter stages of the disease and may be associated with progression. Discussion/conclusion: This preliminary study represents a valuable starting point for a future study employing a larger cohort of patients to develop sensitive and specific protein biomarkers that could reliably differentiate between diabetic and hypertensive causes of CKD to allow for improved diagnosis, fewer biopsy procedures, and refined treatment approaches for clinicians

    Proteomic Fingerprint of Lung Fibrosis Progression and Response to Therapy in Bleomycin-Induced Mouse Model

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by the aberrant accumulation of extracellular matrix in the lungs. nintedanib is one of the two FDA-approved drugs for IPF treatment; however, the exact pathophysiological mechanisms of fibrosis progression and response to therapy are still poorly understood. In this work, the molecular fingerprint of fibrosis progression and response to nintedanib treatment have been investigated by mass spectrometry-based bottom-up proteomics in paraffin-embedded lung tissues from bleomycin-induced (BLM) pulmonary fibrosis mice. Our proteomics results unveiled that (i) samples clustered depending on the tissue fibrotic grade (mild, moderate, and severe) and not on the time course after BLM treatment; (ii) the dysregulation of different pathways involved in fibrosis progression such as the complement coagulation cascades, advanced glycation end products (AGEs) and their receptors (RAGEs) signaling, the extracellular matrix-receptor interaction, the regulation of actin cytoskeleton, and ribosomes; (iii) Coronin 1A (Coro1a) as the protein with the highest correlation when evaluating the progression of fibrosis, with an increased expression from mild to severe fibrosis; and (iv) a total of 10 differentially expressed proteins (padj-value ≤ 0.05 and Fold change ≤-1.5 or ≥1.5), whose abundance varied in the base of the severity of fibrosis (mild and moderate), were modulated by the antifibrotic treatment with nintedanib, reverting their trend. Notably, nintedanib significantly restored lactate dehydrogenase B (Ldhb) expression but not lactate dehydrogenase A (Ldha). Notwithstanding the need for further investigations to validate the roles of both Coro1a and Ldhb, our findings provide an extensive proteomic characterization with a strong relationship with histomorphometric measurements. These results unveil some biological processes in pulmonary fibrosis and drug-mediated fibrosis therapy

    Optimization-Based wearable tactile rendering

    Get PDF
    Novel wearable tactile interfaces offer the possibility to simulate tactile interactions with virtual environments directly on our skin. But, unlike kinesthetic interfaces, for which haptic rendering is a well explored problem, they pose new questions about the formulation of the rendering problem. In this work, we propose a formulation of tactile rendering as an optimization problem, which is general for a large family of tactile interfaces. Based on an accurate simulation of contact between a finger model and the virtual environment, we pose tactile rendering as the optimization of the device configuration, such that the contact surface between the device and the actual finger matches as close as possible the contact surface in the virtual environment. We describe the optimization formulation in general terms, and we also demonstrate its implementation on a thimble-like wearable device. We validate the tactile rendering formulation by analyzing its force error, and we show that it outperforms other approaches

    Plasma Proteomic Variables Related to COVID-19 Severity: An Untargeted nLC-MS/MS Investigation

    Get PDF
    Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection leads to a wide range of clinical manifestations and determines the need for personalized and precision medicine. To better understand the biological determinants of this heterogeneity, we explored the plasma proteome of 43 COVID-19 patients with different outcomes by an untargeted liquid chromatography-mass spectrometry approach. The comparison between asymptomatic or pauci-symptomatic subjects (MILDs), and hospitalised patients in need of oxygen support therapy (SEVEREs) highlighted 29 proteins emerged as differentially expressed: 12 overexpressed in MILDs and 17 in SEVEREs. Moreover, a supervised analysis based on a decision-tree recognised three proteins (Fetuin-A, Ig lambda-2chain-C-region, Vitronectin) that are able to robustly discriminate between the two classes independently from the infection stage. In silico functional annotation of the 29 deregulated proteins pinpointed several functions possibly related to the severity; no pathway was associated exclusively to MILDs, while several only to SEVEREs, and some associated to both MILDs and SEVEREs; SARS-CoV-2 signalling pathway was significantly enriched by proteins up-expressed in SEVEREs (SAA1/2, CRP, HP, LRG1) and in MILDs (GSN, HRG). In conclusion, our analysis could provide key information for 'proteomically' defining possible upstream mechanisms and mediators triggering or limiting the domino effect of the immune-related response and characterizing severe exacerbations

    Gateways as inter-modal nodes in different ages: The Venetian region, eighteenth to twentieth centuries

    Get PDF
    This paper focuses on the theoretical implications of a regional case studyfor the analysis of transportation networks and gateway functions. Thestarting point is the result of a research on the changing role of gateways,and on the relocation of the gateway function from one city to a series ofcities in the Venetian region from the eighteenth to the twentieth century.Against this evolution, I test the validity and usefulness of a definition of thegateway as a point of inter-modal exchange for its historical interpretation.Changing transport technologies involve different organisations of inter-modal exchanges, and imply more or less intense economic functions ofgateway cities. These changes intertwine with political events and deci-sions, and more general economic changes: they could at the same time beread as an effect of these transformations, and as a causal factor. From this perspective, a study of intermodality shows to be useful to shed new lighton specific changes in the structure of urban hierarchie

    Detecting proteomic indicators to distinguish diabetic nephropathy from hypertensive nephrosclerosis by integrating matrix-assisted laser desorption/ionization mass spectrometry imaging with high-mass accuracy mass spectrometry

    Get PDF
    Introduction: Diabetic nephropathy (DN) and hypertensive nephrosclerosis (HN) represent the most common causes of chronic kidney disease (CKD) and many patients progress to -end-stage renal disease. Patients are treated primarily through the management of cardiovas-cular risk factors and hypertension; however patients with HN have a more favorable outcome. A noninvasive clinical approach to separate these two entities, especially in hypertensive patients who also have diabetes, would allow for targeted treatment and more appropriate resource allocation to those patients at the highest risk of CKD progression. Meth-ods: In this preliminary study, high-spatial-resolution matrix-assisted laser desorption/ion-ization (MALDI) mass spectrometry imaging (MSI) was integrated with high-mass accuracy MALDI-FTICR-MS and nLC-ESI-MS/MS analysis in order to detect tissue proteins within kidney biopsies to discriminate cases of DN (n = 9) from cases of HN (n = 9). Results: Differences in the tryptic peptide profiles of the 2 groups could clearly be detected, with these becoming even more evident in the more severe histological classes, even if this was not evident with routine histology. In particular, 4 putative proteins were detected and had a higher signal intensity within regions of DN tissue with extensive sclerosis or fibrosis. Among these, 2 proteins (PGRMC1 and CO3) had a signal intensity that increased at the latter stages of the disease and may be associated with progression. Discussion/Conclusion: This preliminary study represents a valuable starting point for a future study employing a larger cohort of patients to develop sensitive and specific protein biomarkers that could reliably differentiate between diabetic and hypertensive causes of CKD to allow for improved diagnosis, fewer biopsy procedures, and refined treatment approaches for clinicians.Proteomic

    Synergy between vitamin D and sex hormones in respiratory functionality of patients affected by COVID-19

    Get PDF
    The outcome of COVID-19 appears to be influenced by vitamin D status of population. Although epidemiological data indicate that COVID-19 produces more severe symptoms and higher mortality in elderly in comparison to young patients and in men in comparison to women to date sex and age differences in vitamin D status in infected patients have not been evaluated yet. In this study we evaluated the levels of circulating 25(OH)D in patients hospitalized for COVID-19 divided accordingly to their sex and age. We also correlated 25(OH)D levels with patient’s respiratory status (i.e., PaO2/FiO2 ratio) and with sex hormones plasma levels to analyze the potential relationship of these parameters. We found no significant differences in plasma levels of 25(OH)D between pre- and post-menopausal female patients and age matched male patients. Interestingly, the 25(OH)D plasma levels positively correlated to PaO2/FiO2 ratio only in young patients, regardless of their sex. We also found a significantly positive correlation between 17β-estradiol and 25(OH)D in elderly women and between testosterone and 25(OH)D in elderly men, supporting the role of sex hormones in maintaining 25(OH)D levels. In conclusion, we suggest that a synergy between vitamin D and sex hormones could contribute to the age-related outcome of COVID-19
    • …
    corecore