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Abstract: Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection leads to a wide
range of clinical manifestations and determines the need for personalized and precision medicine. To
better understand the biological determinants of this heterogeneity, we explored the plasma proteome
of 43 COVID-19 patients with different outcomes by an untargeted liquid chromatography-mass
spectrometry approach. The comparison between asymptomatic or pauci-symptomatic subjects
(MILDs), and hospitalised patients in need of oxygen support therapy (SEVEREs) highlighted
29 proteins emerged as differentially expressed: 12 overexpressed in MILDs and 17 in SEVEREs.
Moreover, a supervised analysis based on a decision-tree recognised three proteins (Fetuin-A, Ig
lambda-2chain-C-region, Vitronectin) that are able to robustly discriminate between the two classes
independently from the infection stage. In silico functional annotation of the 29 deregulated proteins
pinpointed several functions possibly related to the severity; no pathway was associated exclusively
to MILDs, while several only to SEVEREs, and some associated to both MILDs and SEVEREs; SARS-
CoV-2 signalling pathway was significantly enriched by proteins up-expressed in SEVEREs (SAA1/2,
CRP, HP, LRG1) and in MILDs (GSN, HRG). In conclusion, our analysis could provide key information
for ‘proteomically’ defining possible upstream mechanisms and mediators triggering or limiting the
domino effect of the immune-related response and characterizing severe exacerbations.

Keywords: COVID-19; proteomics; mass spectrometry; SARS-CoV-2; plasma; blood; severe

1. Introduction

Since December 2019, Coronavirus disease 2019 (COVID-19) has been spreading
around the world. Subjects infected by severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2), the etiologic agent responsible for COVID-19, can develop a wide range
of symptoms. Indeed, patients can range from an asymptomatic state to showing life-
threatening clinical signs, such as the development of acute respiratory distress syndrome
(ARDS). In more detail, it has been estimated that 20% of patients develop respiratory
problems that require oxygen supply; some of them also suffer from neurological or
haematological problems, while the mortality rate has been calculated as 2.3%. It is known
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that elderly people and subjects with comorbidities are at more risk to develop severe
symptoms, and that the disease course could be influenced and dependent on several
predisposing factors (such as diet, environment, genetic background) [1–3]; however, the
molecular mechanisms responsible for the worsening of the conditions are still not fully
understood [4–6].

In this context, blood proteomics shows a great potentiality, since this biofluid can be
collected in a less invasive way and reflects the changes of the whole organism [7–9]. It
has been shown by supervised learning that the plasma proteome is a highly informative
indicator of the clinical severity of COVID-19 patients, superior to other sources and tech-
niques such as the transcriptome of the peripheral blood mononuclear cells (PBMCs) [10].
Therefore, in these two years of pandemic, blood collected from patients infected with
SARS-CoV-2 has been widely studied with mass spectrometer (MS)-based proteomics tech-
niques in order to investigate COVID-19 disease more deeply. It has indeed been reported
that the plasma proteome of patients affected by COVID-19 remains perturbed for at least
6 weeks after the first positive swab test. Furthermore, by the analysis of plasma proteins
at the time of seroconversion, it can be possible to detect which patients will suffer from
post-acute sequelae of SARS-CoV-2 (PASC) [11].

In the literature, some proteins have been identified as the most commonly deregulated
in COVID-19 patients. They include: SAA2, SAA1, ITIH3, LBP, LGALS3BP, CFB, CRP and
APOA1. Among them, CRP is usually known as a marker of inflammation, while, in a
recent work, the expression of the first four proteins on the list have been observed to
increase in correlation to the severity of the disease. Regarding LGALS3BP, CFB and ITIH4,
they are more expressed in all COVID-19 patients as compared to healthy subjects; on the
other hand, APOA1 shows the opposite pattern, a decreasing expression in uninfected
individuals [12].

Since the first works were published, a correlation between blood proteome and
disease severity was observed. Park et al. analysed a small cohort of patients and they found
a deregulation of neutrophil activation and blood coagulation pathways by comparing a
group of mild patients with severe ones [13]. A similar study was performed by Messner
et al. with serum and plasma samples collected from a larger cohort; they identified a list of
27 possible biomarkers associated with COVID-19 severity. These proteins are involved in
different pathways, which include: complement factors, coagulation system, inflammatory
modulators and proinflammatory signalling [8].

Moving to more recent works, Ciccosanti et al. found a panel of proteins that are
mainly involved in the acute inflammatory response and that are increased in all COVID-19
patients, but more expressed in patients who required admission to an intensive care unit
(ICU) or who had a fatal outcome. Instead, other proteins are upregulated only in patients
with a more severe outcome, they are mainly involved in the complement cascade, in
the coagulation pathway, in the extracellular matrix organisation and they also include
proteins involved in some types of amyloid diseases and VLDL/LDL lipoproteins [4].
However, the role of the complement and coagulation cascade in the disease still remains
ambiguous, since Captur et al. observed an increase in this pathway in patients with non-
severe infection, in addition to lipid atherosclerosis and cholesterol metabolism, lysosomal
function and autophagy pathways. They also reported that the proteins involved in COVID-
19 disease during the acute infection mainly include markers of oxidative stress, metabolic
reprogramming factors and cell adhesion molecules [11].

Recognizing the molecular variables associated with worse outcomes could be piv-
otal for obtaining the knowledge required to plan an effective triaging and reshape the
personalised care of each patient, allowing a better administration of human and material
resources [14]. The discovery of the molecular signature of the disease in relation to its
progression and the intensity of clinical manifestation would also enable the identification
of possible therapeutic targets [15]. Variations in human plasma protein abundances, thus,
have been so far commonly recognized as effective indicators of pathophysiological states
and changes in a plethora of diseases, including various virosis [8].
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In this scenario, our goal is to investigate by liquid chromatography tandem mass
spectrometry (LC-MS/MS) the plasma proteome of COVID-19 patients with different
outcomes, from less to more severe ones. Thereby, we aim to define which key protein
patterns and biological networks result differently modulated in response to the interaction
of SARS-CoV-2 with the host and explore the chain mechanistic effects stimulated by the
deregulation of these altered proteins that leads to a gap in the phenotype spectra.

2. Results

An untargeted and label-free proteomic approach has been applied to plasma samples
of patients affected by SARS-CoV-2 presenting different outcomes. Based on the WHO
COVID-19 Severity Index and clinical criteria, a selected group of patients (n = 43) were
divided into two subgroups (MILDs and SEVEREs) for the following statistical analysis.
The Mild group basically includes asymptomatic or paucisymptomatic ambulatory treated
subjects while the Severe class regards hospitalised patients in need of oxygen support
therapy. The WHO classification was referred to the day of sample collection. A description
of the characteristics of the enrolled patients is reported in Table 1. The p-value referred to
the non-parametric test on the Age variable is significant. While no significant difference
based on gender between Severe and Mild patients was highlighted by Fisher’s exact
test. To exclude a possible hidden confounding interference of these two variables, all
the statistical analysis and comparisons are additionally adjusted for these factors, as
mentioned in the Materials and Methods section.

Table 1. Cohort description—age and gender. This table summarises the demographic characteristics
of the 43 patients selected for the analysis: Age and Sex overall and stratified by the WHO Score,
p-value and the corresponding statistical tests are reported.

Overall Mild Severe
WHO Score

1
WHO Score

4
WHO Score

5
Participants (n) 43 33 5 5 p Test

AGE (median [IQR]) 56.00
[39.50, 63.00]

47.00
[35.00, 60.00]

65.50
[58.75, 67.75] 0.014 Wilcoxon

SEX (%)
Female 20 (46.5) 16 (48.5) 4 (40.0)

0.728 Exact Fisher
Male 23 (53.5) 17 (51.5) 6 (60.0)

2.1. Proteomic Variables Related to Worse Outcome

Aimed at the study of plasma proteins whose expression is associated with the clinical
manifestations of disease conditions triggered by SARS-CoV-2, we proteomically explored
plasma samples collected from COVID-19 patients with different outcomes. By a label-free
nLC-MS/MS based approach, 554 human proteins were identified in the two groups of
patients (MILDs & SEVEREs); among them, a subset of 331 proteins that met more stringent
quality criteria were also considered for a relative quantification. All of the protein IDs are
listed and detailed in Supplementary Table S1.

As a first step, multiple statistical comparisons were applied to investigate the pro-
teome changes associated with the severity of the disease. A volcano plot of the significance
related to Mild and Severe patients was obtained (Figure 1). The graphic highlights the
dysregulation of a panel of 29 proteins whose expression was strongly influenced by the
intensity of the symptoms (p-value ≤ 0.05; Fold change ≤ −1.5 or ≥ 1.5). In particular,
17 of them were upregulated in patients manifesting worse outcomes. The complete list of
these differentially expressed proteins (DEPs) is illustrated in Supplementary Table S2.
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Figure 1. Volcano plot. Volcano plot showing which proteins are significantly deregulated between 
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teins, in green, are upregulated in SEVEREs (Fold change ≤ −1.5); while 12 proteins, in red, are up-
regulated in MILDs (Fold change ≥ 1.5). Proteins are reported as UNIPROT_ID. 

All of the 29 proteins belonging to this panel were used to perform a 
heatmap-cluster analysis (Figure 2) in order to evaluate the similarities between the pro-
tein profiles for each patient. In the graphic, the different abundances of each protein in 
correlation with each single patient are visually shown. From the heatmap, a double and 
mutual connection can be observed that confirms and supports the specificity of the 
molecular signatures underlined by the multiple comparison analysis: (i) an evident 
clusterization of the MILDs from the SEVEREs on one side, and (ii) a clear clusterization 
of all the DEPs consistent with their expression in the two groups of patients on the other 
side. Only two patients out of forty-three are likely to mis-clusterize, a behaviour proba-
bly ascribed to possible confounding factors, including biological variability.  

Figure 1. Volcano plot. Volcano plot showing which proteins are significantly deregulated between
MILDs and SEVEREs considering a p-value (p) ≤ 0.05 and a fold change threshold of ±1.5. 17 proteins,
in green, are upregulated in SEVEREs (Fold change ≤−1.5); while 12 proteins, in red, are upregulated
in MILDs (Fold change ≥ 1.5). Proteins are reported as UNIPROT_ID.

All of the 29 proteins belonging to this panel were used to perform a heatmap-cluster
analysis (Figure 2) in order to evaluate the similarities between the protein profiles for each
patient. In the graphic, the different abundances of each protein in correlation with each
single patient are visually shown. From the heatmap, a double and mutual connection
can be observed that confirms and supports the specificity of the molecular signatures
underlined by the multiple comparison analysis: (i) an evident clusterization of the MILDs
from the SEVEREs on one side, and (ii) a clear clusterization of all the DEPs consistent
with their expression in the two groups of patients on the other side. Only two patients
out of forty-three are likely to mis-clusterize, a behaviour probably ascribed to possible
confounding factors, including biological variability.
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by a red box; it can be observed that the two groups of proteins differentially clusterise. Patients 
belonging to the MILDs group are shown in aquamarine, while SEVEREs are shown in orange; the 
colour scale from pink to blue indicates the level of expression of each protein, from a low expres-
sion to a high expression. 
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arm, it recognizes all the Mild patients and three Severe patients as MILDs (84% of ac-
curacy). In a second step, the condition VTNC (VTN- Vitronectin) ≥ 26 × 106  increases 
the accuracy of classification to 98%. In the third and last split, the node LAC2 (IGLC2- Ig 
lambda-2 chain C regions) ≥ 5.7 × 106  identifies the last two leaves of the tree, where all 
the Severe patients are clustered as SEVEREs and, on the other hand, all the Mild ones as 
MILDs.  

Figure 2. Heatmap-cluster analysis. The heatmap shows the different protein expression levels in
correlation to each patient (reported as proteomic IDs). The green box highlights the proteins that
are up-expressed in Severe patients, while proteins up-expressed in Mild patients are highlighted
by a red box; it can be observed that the two groups of proteins differentially clusterise. Patients
belonging to the MILDs group are shown in aquamarine, while SEVEREs are shown in orange; the
colour scale from pink to blue indicates the level of expression of each protein, from a low expression
to a high expression.

2.2. Classification Tree Related to Severity

The presence of significant molecular signatures associated with the severity suggested
the idea of checking the most significant proteins able to characterise the different levels of
infection in the patient cohort. To this aim, a supervised analysis based on a classification
tree was applied [16].

The classification tree in Figure 3 shows that the first protein that splits the patients
into two groups is FETUA (AHSG—Alpha-2-HS-glycoprotein), with a cut-off of 25 × 106 In
the right arm, corresponding to the patients with the FETUA area < 25 × 106 (16% of the
samples), the tree classifies as SEVEREs 70% of the Severe patients. Instead, in the left arm,
it recognizes all the Mild patients and three Severe patients as MILDs (84% of accuracy). In
a second step, the condition VTNC (VTN—Vitronectin) ≥ 26 × 106 increases the accuracy
of classification to 98%. In the third and last split, the node LAC2 (IGLC2—Ig lambda-2
chain C regions) ≥ 5.7 × 106 identifies the last two leaves of the tree, where all the Severe
patients are clustered as SEVEREs and, on the other hand, all the Mild ones as MILDs.

The same analysis was repeated considering a smaller cohort of patients, which
included only the patients whose plasma was collected in the acute phase within 21 days
from the first positive test (patients with negative test excluded). The description of this
subgroup of patients is reported in Supplementary Table S3. In the classification illustrated
in Figure 4, the highest accuracy was reached in only two steps based on FETUA and LAC2
proteins, additionally confirming the role of these two molecules in the onset and in the
first stages of the disease development.



Int. J. Mol. Sci. 2023, 24, 3570 6 of 18Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 3. Decision tree of all 43 patients. The decision tree (DT) selects the most impactful proteins 
with the relative cut-off able to discriminate between the two classes. In each box are reported: the 
more frequent class indicated by the caption “Mild” or “Severe,” the number of cases belonging to 
the two classes and the percentage of patients in that box. The boxplot of the three selected proteins 
by the DT are reported for Mild and Severe patients. 

The same analysis was repeated considering a smaller cohort of patients, which in-
cluded only the patients whose plasma was collected in the acute phase within 21 days 
from the first positive test (patients with negative test excluded). The description of this 
subgroup of patients is reported in Supplementary Table S3. In the classification illus-
trated in Figure 4, the highest accuracy was reached in only two steps based on FETUA 
and LAC2 proteins, additionally confirming the role of these two molecules in the onset 
and in the first stages of the disease development. 

Figure 3. Decision tree of all 43 patients. The decision tree (DT) selects the most impactful proteins
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more frequent class indicated by the caption “Mild” or “Severe,” the number of cases belonging to
the two classes and the percentage of patients in that box. The boxplot of the three selected proteins
by the DT are reported for Mild and Severe patients.
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with MILDs, while several pathways are associated only to the SEVEREs group or shared 
by both MILDs and SEVEREs. In particular, only pathways related to haemostasis, the 
complement cascade, and partially to vesicle mediated transport, seem to be altered in 
patients with no or mild symptoms as well (Figure 5). On the other side, the enrollment of 
a plethora of defence responses, including the pathways typical of the adaptive immun-
ity (as the signalling of B cell receptor) and others, specific of the humoral innate re-
sponses (i.e. Fc epsilon receptor (FCERI) signalling and Fc gamma receptor (FCGR) de-
pendent phagocytosis) were triggered in hospitalised patients in need of oxygen. It 

Figure 4. Decision tree of patients during the acute phase. The picture illustrates the supervised
decision tree (DT) analysis related only to the patients whose samples were collected in the acute
phase or at least within 21 days from the first positive test (patients with negative test excluded).
In each box are reported: the more frequent class indicated by the caption “Mild” or “Severe”, the
number of cases belonging to the two classes and the percentage of patients in that box. The boxplot
of the three selected proteins by the DT are reported for Mild and Severe patients.

2.3. Functional Annotation

Bioinformatic pipelines were applied for in silico functional annotation in order to
recognise a panel of proteomic functional signatures and uncover possible altered biological
processes and pathways that differently characterise COVID-19 patients with mild or
severe outcomes.
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The panel of 29 DEPs pinpointed in the multiple comparisons analysis was used to
perform the functional enrichment and highlight possible functions associated with severity.

The biological processes resulting from upregulated proteins in severe or mild patients
are listed in Supplementary Tables S4 and S5, respectively. In general, a greater involvement
of both innate and adaptive immune responses, including the classical complement acti-
vation and the leukocytes- and neutrophils-mediated immunity, was observed in patients
that were hospitalised, who needed oxygen supplement as compared to asymptomatic or
paucisymptomatic patients (Table S4). On the other hand, this last group was likely to man-
ifest a more evident enhancement of the platelet activation and degranulation processes
(Table S5).

Reactome pathway analysis was carried out on the entire panel of 29 DEPs and
schematised in Supplementary Figure S1. Interestingly, no pathway is associated only with
MILDs, while several pathways are associated only to the SEVEREs group or shared by both
MILDs and SEVEREs. In particular, only pathways related to haemostasis, the complement
cascade, and partially to vesicle mediated transport, seem to be altered in patients with no or
mild symptoms as well (Figure 5). On the other side, the enrollment of a plethora of defence
responses, including the pathways typical of the adaptive immunity (as the signalling of B
cell receptor) and others, specific of the humoral innate responses (i.e. Fc epsilon receptor
(FCERI) signalling and Fc gamma receptor (FCGR) dependent phagocytosis) were triggered
in hospitalised patients in need of oxygen. It should be noted that the involvement of
the complement cascade differs from MILDs and SEVEREs, for which the enhancement
of the protein level is likely to be related not only to the regulation of this pathway, but
also to the triggering of the classical antibody-mediated complement pathway (Figure 5).
Regarding the deregulation of the vesicle mediated transport, except for the involvement of
RAB1A up-expressed in MILDs, the scavenging of heme from plasma seems to be enforced
in patients with a severe clinical manifestation (Supplementary Figure S1).
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Figure 5. Network of the enriched pathways. Overview of the main significant pathways resulting
from enrichment based on the 29 DEPs in Mild and Severe SARS-CoV-2 patients (g:Profiler [17]). The
network is illustrated following the hierarchical structure of the Reactome database. Pathways which are
enriched only in SEVEREs are in green, while those expressed in both MILDs and SEVEREs are in blue.
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Using a different data source for pathway enrichment, in addition to the already
observed involvement of the complement cascade both in SEVEREs and MILDs, a deregu-
lation of a specific network map of SARS-CoV-2 signalling pathway for both key proteins
whose concentration has been shown to increase both in patients with severe and mild
symptoms was highlighted (SAA1/2, CRP, HP, LRG1 and GSN, HRG, respectively) (Supple-
mentary Figure S2). Through this annotation approach, a stimulation of proteins related to
Vitamin B12 and folate metabolisms and selenium micronutrient network was also noted.

3. Discussion
3.1. Key proteins Characterising Patients Based on the Intensity of the Symptoms

Following the outbreak of COVID-19 and its declaration as a pandemic on 11 March
2020, much work has been performed in order to unravel the mechanisms which underpin
this disease. In particular, proteomics and related technologies have been readily used due
to their capacity to underline molecular alterations relevant to its pathogenesis directly
from easily obtained biological specimens, such as blood. These more in-depth molecular
insights into the upstream molecular processes responsible for the downstream clinical
display of COVID-19 could shed light on the molecular mechanisms deriving from the
immune-related response to this pathogen.

Herein, a panel of 29 DEPs was identified, of which, 17 were over-expressed in severe
patients and 12 in MILDs (Figure 1; Supplementary Table S2). Among them, several
proteins showed an expression trend that appears in line with the literature. Ciccosanti et al.
observed an increase of the serum amilod A1 and A2 (SAA1, SAA2) proteins in patients
who require admission to an ICU (intensive care unit), compared to patients who do not
require ICU admission and to healthy subjects [4]. This observation is consistent with the
significant increase of their abundance in the plasma of patients with worse outcomes.
Their correlation with disease severity is also likely to be confirmed by the work of Sahin
et al. [12]. CRP and SERPINA3, which are considerably more concentrated in the plasma of
SEVEREs, have already been pointed out as candidate predictors for worse outcomes in
COVID-19 [4].

The application of a DT strategy allowed for the definition of three crucial proteins that
were able to distinguish SEVEREs and MILDs for all of the subjects belonging to the cohort.

Fetuin-A (α-2-Heremans-Schmid glycoprotein, FETUA-AHSG), independent of the
infection phase in which the plasma was collected, has been shown to represent a key
molecule for classifying patients based on the outcome. In particular, on its own, it has been
able to efficiently separate the two groups of patients based on severity, obtaining 97% or
94% accuracy, depending on the step of disease progression (Figures 3 and 4). Its plasma
level has been observed as significantly halved in severe patients (Supplementary Table S2).
This negative regulation of AHSG in COVID-19 patients and its possible substantial role in
the processes leading to the exacerbation of SARS-CoV-2 infection is robustly confirmed in
the literature. Fetuin-A is a 60 KDa glycoprotein with a normal serum value of 300–600 g/L
and a pleiotropic role. In particular, its involvement in immune response regulation and
inflammation has been mostly ascribed to its behaviour as a liver-derived negative acute
phase reactant, so far reported [18]. It is known that Fetuin-A serum concentration indeed
decreases during the acute inflammatory response via inhibition of cytokines such as
interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), and it returns to normal
values after successful treatment in many systemic and non-inflammatory diseases, such
as axial spondyloarthritis and inflammatory bowel disease [19], rheumatoid arthritis [20],
inflammatory CNS disease [21] and also in other respiratory pathologies, i.e., chronic
obstructive pulmonary disease (COPD), for which it has been considered a candidate
biomarker for the prediction and evaluation of worsening conditions [22]. Kukla et al.
showed for the first time a significantly lower level of this hepatokine in the serum of
COVID-19 patients and advanced a possible role of its deficiency in the development of
cytokines storm during SARS-CoV-2 infection and in predisposing to a more severe disease
course, independently from confounding factors such as sex, metabolic disorders, lipids
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level, BMI, respiratory symptoms, or liver injury [23]. They also observed a significant
decrease in the abundance of this protein in COVID-19 patients with pneumonia and in
those who required critical care, indicating that lower fetuin-A levels could influence the
disease course and may be associated with a predisposition for worse prognosis. More
recently, Reverté L. et al. determined AHSG together with inter-α-trypsin inhibitor 3 (ITIH3)
as the most accurate biomarkers of the critical clinical progression of COVID-19 by random
forest modelling [24]. Herein, the importance of Fetuin-A in distinguishing mild patients
from more critical ones is confirmed in an Italian Caucasian population independently
from the infection state.

The strength of this classification operated through the DT is further enforced by the
use of two other proteins which are both more abundant in SEVERE’s plasma than in
MILD’s: vitronectin and Immunoglobulin lambda constant 2, which annul any possible
mismatch or error in group recognition (Figures 3 and 4).

Vitronectin (VTNC-VTN), in particular, a 75 KDa multifunctional glycoprotein also
termed the S-protein of the complement system, is produced predominantly by the liver
and has a serum concentration of 200–400 µg/mL. It plays a crucial role both in tissue
remodeling by regulating cell adhesion through binding of its Arg-Gly-Asp (RGD) motif to
different types of integrins, and also in the regulation of the blood system related protease
cascades, such as coagulation and fibrinolysis via heparin and thrombin-antithrombin III
complexes [25]. A recent study showed that VTN, together with other proteins involved
in the extracellular matrix organization, were highlighted as belonging to a cluster of
molecules that are significantly upregulated only in COVID-19 patients with fatal pneumo-
nia compared to those with severe pneumonia requiring ICU admission, and to subjects
with pneumonia that do not require ICU admission [4]. Interestingly, this protein has
been also reported to be recruited together with Clusterin by coronavirus-infected cells
from human serum through Antibody-Dependent Mechanisms, and to be associated with
delayed Complement-mediated death, provoking a series of implications related to viral
pathogenesis and tissue tropism [26].

On the other hand, the antibody IGLC2 (LAC2-IGLC2) unlike vitronectin seems to
confirm its impact in severity discrimination also in acute stages of the disease, and shows
an expression behaviour in line with the literature. One of the most observed COVID-19-
specific signatures at the transcriptional level concerns immunoglobulin-related genes [27],
including IGLC2, which were found to be consistently upregulated in correlation to COVID-
19 disease across different datasets [28,29]. Makund et al. demonstrated that a significant
common program of transcriptional dysregulation of immunoglobulin genes, including
IGLC2 and IGHA1/IGHM/IGKC/IGLC3, exists across both the myeloid and lymphoid milieu
of COVID-19 patients, even if they do not differ across severities [30]. Moreover, IGLC2
has been highlighted as upregulated in the form of transcript in B-cells of SARS-CoV-2
patients [29], and as a protein in sera of COVID-19 patients, where its level has not been
normalised after patient recovery [31].

3.2. Functional Signatures of Severity

One of the critical challenges related to SARS-CoV-2 infection still remains the uncov-
ering of mechanistic pathways encompassing the immunological imbalance and clinical
complications arising from the severe forms of this retrovirus.

Specific immune signatures related to severe host responses appeared evident also
by the functional pathway enrichment. Hallmarks of disease severity seem to be mainly
correlated to the inflammatory mediators and networks, including acute phase response
proteins, leukocyte mediated immunity and neutrophil degranulation (Supplementary
Table S4). Several proteins linked to the acute phase response, such as CRP, SERPINA3,
SAA1 and SAA2, have already been shown as increased in sera of severe COVID-19 patients,
through an MS based Data Independent Analysis by Lee et al. [32]. ORM1 and HP were also
highlighted as altered depending on the severity of the patients by Shen et al. in serum [33]
and by Beimdiek J et al. in plasma, respectively [34]. The modulation and the polymorphism
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of the human leukocyte antigen (HLA) play a key role in the immune response, and its
variants could affect COVID-19 progression and severity [35,36]. Additionally, a gradual
augment depending on the disease severity of the neutrophil degranulation has been
revealed by a trans-omics study performed by Wu et al. [37].

The over-inflammatory state detected in COVID-19 is known to deal with numerous
players that are recruited and mobilized, especially during exaggerated immune responses
and worse outcomes [38]. This immune hyper-activation could thus be considered a key
driver of COVID-19, even if the mechanisms that lead to it still remain uncertain. In partic-
ular, the severe phenotypes of COVID-19 carried the triggering of multiple interdependent
events related to complement activation, dysregulated neutrophilia, endothelial injury
and hypercoagulability [39], consistent with what we observed (Supplementary Table S4,
Figure S1). In addition it was demonstrated that the response to SARS-CoV-2 could be a
result of the imbalance of controlling virus replication versus the activation of the adaptive
immune response, and also that a diminished innate antiviral defence, combined with
a boosted production of the inflammatory cytokines, could define the clinical profile of
COVID-19 [40]. An involvement of the adaptive defence, particularly of the B cell recep-
tor (BCR) signalling, and the related up-regulation of several immunoglobulins has been
highlighted (Figure S1 and Figure 5). How the adaptive immune responses between severe
and mild SARS-CoV-2 patients are differentially modulated and the role of B cells in the
progression of this disease remain largely unknown; however, an effect of SARS-CoV-2
infection on BCR signalling has been demonstrated, operating through the alteration of the
metabolomic and transcriptome profiles of B cells [41]. Moreover, increased levels of BCR
clonal expansion and B-cell activation have been observed in patients displaying serious
outcomes, indicating a more robust humoral immune response associated with the severity
of symptoms [42]. Higher levels of a selected panel of immunoglobulins in SEVEREs,
as highlighted in Figure S1, likely suggests possible implications of the innate immune
response via activation and signalling of Fc gamma and Fc epsilon receptors (FCGR and
FCERI). It has been recently reported that the difference in SARS-CoV-2-specific antibodies’
ability to elicit Fc-mediated innate immune functions could represent a candidate contribu-
tor for outcome exacerbations and an inflammation state, supporting the observed hyper
modulation of these pathways in patients with worse symptoms [43]. Proteins related to
scavenging of heme in plasma were also found in our data as upregulated in SEVEREs
(Figure 5) (HP, IGHV1-46, JCHAIN, IGKV3-20, IGKV3-11, IGLC2, IGLV3-1, IGLV3-21). The
levels of hemolytic products, such as free heme, were shown to induce neutrophil extracel-
lular trap (NET) and damage-associated molecular patterns associated with the severity of
septic patients [44], making hemolysis a marker of disease progression and a therapeutic
target [45].

3.3. Functional Patterns Associated to Both SEVEREs and MILDs

The enrichment of pathways for DEPs particularly related to immunomodulation was
expected and is consistent with the literature [6]. However, it is curious to notice that no
systemic processes enriched with functional annotation analysis appeared related only with
molecules with higher levels in MILDs. This remarkable functional behaviour is partially
supported by several findings related to this disease.

The dysregulation of the hemostasis process in our analysis emerged as driven by
some proteins that are more abundant in SEVEREs (IGHV1-46, ORM1, SERPINA3, IGLC2,
IGKV3-20, IGLV3-19, JCHAIN, IGKV3-11, IGLV3-21) and others over-concentrated in MILDs
(ITGB3, HRG, FLNA, AHSG, GP9) (Figure S1). SARS-CoV-2 has been shown to affect the
disruption of the coagulation system, including the excessive activation of the platelets,
leading to hypercoagulation and thrombotic events [46]. In particular, in COVID-19 patients
manifesting severe symptoms, a loss of immune homeostasis has been observed and
ascribed to a deficient immune response or, on the contrary, to its overstimulation [47].
Thus, it is reasonable to assume that the different modulation of critical nodes in this
cascade and in its regulation can be displayed in consequence to different phenotypes.
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The important role of complement (C’) pathways in COVID-19 is well known and
studied. Its involvement was confirmed from our investigation and can be seen both in
MILDs and SEVEREs. In particular, the alteration of the abundances of proteins related
to the classical antibody-mediated path through the creation of C2 and C4 was shown
(Figure S3), and appeared in line with the COVID-19 literature [48]. The regulation of
C’, on the other hand, encompasses CFHR4/ITGB3 upregulated in MILDs, suggesting a
potential role of these molecules in the successful control of COVID-19 infection (Figure S3).
Of note, a case report demonstrated that the pathogenic nature of IgG4 autoantibodies
directed against CFH could trigger the C’-mediated thrombotic microangiopathy in a
patient carrying a genetic predisposition for homozygote CFHR1/4 gene deletion [49]. On
the other hand, ITGB3, together with ITGA2B, were shown to be potential intervention
targets for COVID-19 stroke, due to their direct involvements in processes related to
this outcome, as integrin signalling, and the response to elevated platelet cytosolic Ca2+,
the consequent regulating platelet activation, the extracellular matrix- (ECM-) receptor
interaction, the PI3K-Akt signalling pathway, and the hematopoietic cell lineage [50].

3.4. Specific Enrichment in SARS-CoV-2 Signalling Pathway

The picture outlined above, related to the modulation of the pathways based on the
severity, seems to also be corroborated by other observations related to the variation of the
abundances of proteins more specifically connected to downstream molecular signalling
events triggered by the interaction host/SARS-CoV-2 (Figure S4), a pathway that resulted
strongly enriched in our analysis (Figure S2). Remarkably, protein isoforms upregulated
in SEVEREs (as SAA1/2, CRP, HP, LRG1) have indeed been shown to map only in virus-
mediated pathways with a positive regulation of gene/protein expression. On the contrary,
gelsolin (GSN) and histidine-rich glycoprotein (HRG) associated with an increased plasma
level in MILDs were found in pathways that are substantially inhibited in SARS-CoV-2
host response expected to be negatively regulated (Figure S4).

This behaviour apparently suggests that when the clinical manifestation is moderate,
a strengthening of negative modulators could occur and plays a critical role, potentially
protective of the disease exacerbations. Gelsolin has been known to be an active scavenger,
able, when upregulated, and together with DNase I, to compensate for the actin-mediated
inhibition and influence the neutrophil extracellular traps (NET) clearance whose de-
powering was associated with severe COVID-19 pneumonia and higher mortality [51].
Plasma gelsolin (pGSN) has been shown as downregulated in individuals with active
COVID-19 disease as compared to healthy subjects [8,52], and very recently, it has been
demonstrated that it can be used in a combination with multiple analytes as a significant
predictor of COVID-19 hospitalisation and poor outcomes [53]. Of note, the deficiency
of plasma GSN could significantly impair its known organ-protective function, causing
complications frequently present in individuals affected by COVID-19, such as multi-organ
dysfunction syndrome (MODS), to higher levels of mortality and to long-term morbidity in
survivors [54]. Interestingly, HRG shows a similar behaviour in relation to inflammatory
states of disease. Low HRG levels have been associated with COVID-19 patients, and its
decrease could lead, just like pGSN, to multiple organ failure through a chain of events
that include the demodulation of the coagulation–fibrinolysis system, an abnormality of
neutrophil morphology and endothelial cells, and a consequent immune thrombosis [55,56].
Moreover, its decrease could be a possible predictor of the mortality risk in severe COVID-19
cases, being consistently more abundant in survivors than in non-survivors [57].

3.5. Limitations

Our study presents some limitations. The major limitation is due to the timing of
the collection of samples, which occurred at the beginning of the pandemic. Not all of
the metadata of all of the patients was collected at that time, which prevented us from
performing a correlation between our analysis and possible co-morbidities or treatments,
and from evaluating other inferences.
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However, our findings found strong evidence in the literature, as detailed in the
Discussion section, both at the molecular and functional level, and the partial heterogeneity
of our cohort supported our aim to focus more on exploring specific and holistic protein
signatures of the severity than on studying the disease progression. Moreover, the ability of
few key proteins to recognise the cohort based on the disease phenotype was maintained
independently from the collection time, and from confounding interferences such as age
and gender, indirectly enforcing the involvement of these molecules in driving and/or
measuring the levels of symptom exacerbation.

4. Materials and Methods

An overview of the experimental design is illustrated in Figure 6.
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from COVID-19 patients with different outcomes to the statistical and functional analysis. After
the collection, samples undergo an inactivation process of SARS-CoV-2 virus, then, proteins are
deglycosylated and enzymatically digested, the peptide mixture is analysed by LC-MS/MS and data
are finally processed by specific software.

4.1. Plasma Sample Collection

Plasma samples from COVID-19 patients were collected at the Foundation IRCCS
Ospedale Maggiore Policlinico, Milano, Italy, from patients hospitalised for COVID-19 or
evaluated in the outpatient clinic. Blood samples were collected in Vacutainer® K3E tubes
containing EDTA (Becton Dickinson Italia S.p.A., Milano, Italy), centrifuged at 3700 rpm
for 10 min and then stocked at −80 ◦C. The study was approved by the Institutional
Review Board Milano Area 2 (#103388-1 April 2020). All participants provided their written
informed consent to participate in this study, which was conducted in accordance with the
Declaration of Helsinki.

From the entire cohort, 43 patients met specific clinical criteria, were selected and
subjected to data analysis and, in case of multiple sample collection, only one sample was
considered. The 43 patients were divided into two groups: “Mild” and “Severe” on the
basis of the gravity score assigned by the World Health Organization (WHO), according to
Supplementary Table S6 [8]. The gravity score was referred to the time of the collection. In
particular, ambulatory asymptomatic or paucisymptomatic patients with no limitation of
activity were considered as MILDs, while hospitalised patients in oxygen therapy without
intubation or mechanical ventilation were considered as SEVEREs. A clinical description of
the population is reported in Supplementary Table S7.

4.2. Sample Inactivation and Deglycosylation

To allow safe sample manipulation, the virus was inactivated and plasma samples were
digested by following the protocol described by Pagani et al. [58]. Briefly, the inactivation
was performed by heating samples for 60 min at 56 ◦C and by adding freezing ethanol
(Honeywell, ≥99.8%, Offenbach, Germany), 9:1 ethanol/sample (v/v).

After that, samples were centrifuged at 13,000 rcf at 4 ◦C for 15 min, then, the supernatant
was discarded while the pellet was left to air-dry and resuspended in 50 mM ammonium
bicarbonate (NH4HCO3, Sigma-Aldrich, ≥99.0%, Darmstadt, Germany) buffer solution.
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To enhance enzymatic digestion, RapiGestTM SF Surfactant (Waters Corporation, Mil-
ford, MA, USA) was added to the final concentration of 0.1%. After protein quantification
with a Nanodrop spectrophotometer (NanoDrop OneC, Thermo Scientific, Wilmington,
DE, USA), N-Glycosidase F (Roche Diagnostics, Mannehim, Germany) was added to the
samples (10 U/100 µL of plasma) and then incubated overnight at 37 ◦C.

4.3. Protein Digestion

Samples were treated with DL-Dithiothreitol (DTT) (Sigma-Aldrich, St. Louis, MO,
USA, ≥99.5%) at the final concentration of 40 mM and incubated for 45 min at 56 °C. Then,
iodoacetamide (IAA) (Sigma-Aldrich, St. Louis, MO, USA) at the final concentration of
30 mM was added, and the samples were left at room temperature for 30 min for the
carbamidomethylation reaction.

The proteins were enzymatically digested by adding 8 µg/100 µL of trypsin (trypsin
from the porcine pancreas, Sigma-Aldrich, St. Louis, MO, USA), then, samples were
incubated overnight at 37 ◦C. The enzymatic reaction was stopped by adding trifluoroacetic
acid (TFA) (Honeywell, Seelze, Germany) to a final concentration of 0.5% and eventually
formic acid (FA) (LiChropur®, Merck KGaA, Darmstadt, Germany) to reach an acidic pH
(<2) and RapiGestTM SF Surfactant was removed by centrifuging samples at 13000 rpm
for 10 min. The supernatant containing the peptides was collected, then, the volume was
reduced using a vacuum centrifugal evaporator (Hetovac, Savant); dried peptides were
resuspended in 55 µL of loading pump phase A (H2O:ACN:TFA 98:2:0.1).

Peptide content was quantified by using a Nanodrop spectrophotometer (NanoDrop
OneC, Thermo Scientific, Wilmington, DE, USA) and samples were desalted using Ziptip™
µ-C18 Pipette Tips (Merck Millipore Ltd., Sigma-Aldrich, St. Louis, MO, USA). The peptides
were eluted with a solution of 80% acetonitrile and 0.1% formic acid (FA), dried using a
vacuum centrifugal evaporator (Hetovac, Savant) and resuspended in 50 µL of loading
pump phase A.

4.4. Mass Spectrometry Analysis

For each sample, 2 µg of tryptic peptides were injected into a Dionex UltiMate 3000
rapid separation (RS) LC nanosystem (Thermo Scientific, Sunnyvale, CA, USA) cou-
pled with an Impact HDTM UHR-qToF system (Bruker Daltonics, Bremen, Germany).
The samples were loaded into a µ-precolumn (Thermo Scientific, Acclaim PepMap 100,
100 µm × 2 cm, nanoViper, C18, 3 µm) for a further desalting and concentration step; then,
the peptides were separated in an analytical 50 cm nanocolumn (Thermo Scientific, Acclaim
PepMap RSLC, 75 µm × 50 cm, nanoViper, C18, 2 µm) with a multistep 240 min gradient
ranging from 4% to 98% of nanopump phase B (H2O:ACN:FA 20:80:0.08) at a flow rate
of 300 nL/min and temperature of the column in the oven of 40 °C. The eluted peptides
were ionised using a nanoBoosterCaptiveSpray™ (Bruker Daltonics) source using heated
nitrogen dry gas (T = 150 °C; 3 L/min) enriched with acetonitrile (ACN) (Honeywell,
≥99.9%, Offenbach, Germany). The mass spectrometer was operated in DDA (Data De-
pendent Acquisition Mode), with automatic switching between full-scan MS and MS/MS
acquisition, as already reported [58]. N2 was used as a gas for CID (collision-induced
dissociation) fragmentation. The software automatically selected the number of precursor
ions in order to fit into a fixed cycle time; the time between two subsequent MS acquisitions
was 5 s. The charge of precursor ions ranged between +2 and +5, and precursor peaks
above 1575 counts, in the 300–1221 and 1225–2200 m/z windows, were selected. IDAS
(Intensity Dependent Acquisition Speed) and RT2 (RealTime Re-Think) functionalities were
applied. In order to achieve an improvement of mass accuracy, the mass spectrometer was
calibrated using a mix of ten standards with a known mass (MMI-L Low Concentration
Tuning Mix, Agilent Technologies, Santa Clara, CA, USA) before the sample run sequence.
In addition, a specific lock mass (1221.9906 m/z) and a calibration segment (at the first
15 min of the gradient) of 10 mM sodium formate (1% NaOH 1 M and 0.1% FA) cluster
solution was used.
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4.5. Data Processing

Raw data were elaborated by using Compass DataAnalysisTM, v.4.1 (Bruker Daltonics,
Hamburg, Germany). The resulting mass lists were processed using Peaks Studio X-Plus
(Bioinformatics Solutions Inc., Waterloo, ON, USA); a SARS-CoV and SARS-CoV-2 protein
database (UniProt, pre-release dataset, was downloaded from UniProt (ftp://ftp.uniprot.
org/pub/databases/uniprot/pre_release/, accessed on 6 October 2021)), combined with a
human database (SwissProt, released March 2020; 562,755 sequences; 202,599,198 residues)
and integrated to the search engine was used. The parameters were set as follows: trypsin as
the enzyme, carbamidomethyl as the fixed modifications, deamidated-only N and oxidation
(M) as the variable modifications, 20 ppm as the precursor mass tolerances and 0.05 Da
for the product ions. A false discovery rate (FDR) ≤ 1% was applied to all the analyses
and the proteins were considered identified only if they had at least one unique significant
peptide (FDR ≤ 1%; p-value ≤ 0.05), while in the quantification, only proteins with at least
two unique significant peptides were considered. Functional annotations were performed
using STRING (https://string-db.org/, version 11.5, accessed on 16 November 2022) [59]
and g:Profiler (https://biit.cs.ut.ee/gprofiler/gost, 30 December 2022) [17].

4.6. Statistical Analysis on Quantified Proteins

The area of the top three peptides of each quantifiable protein was used to perform a
statistical analysis adjusted for gender and age. Some plasma proteins (keratin proteins,
albumin and histone proteins) that are highly abundant in blood or possible contaminants,
or with no clinical interest in our study, were excluded from the analysis.

Patients’ demographic characteristics (i.e., Age and Sex) are reported as median (I-III
quartile) and frequencies, both overall and stratified by the two groups. Non-parametric
Wilcoxon Rank-Sum test and Exact Fisher test were performed on Age and Sex, respectively,
in order to detect differences within “Mild” and “Severe”.

In order to see which proteins were differentially expressed between the two groups,
we built a volcano plot performing the non parametric Wilcoxon Rank-Sum test for clustered
data and considering a p-value lower than 0.05 and a fold change of 1.5.

Due to the high degree of biological variability, the higher amount of comparison with
respect to the patient cohort, no further statistical correction was performed. For every
considered protein feature the influence of sex and age was assessed in all the populations
and a strict matching between Mild and Severe patients was considered stratifying the two
groups by Age and Sex in order to adjust the influence of these confounding factors and
improve the specificity of the disease signatures.

To evaluate the similarities between the two groups, we built a heatmap with all of
the proteins that were significantly different by using the area of the top three peptides of
each protein after standardisation.

Next, to select the most impactful proteins that discriminate between a mild and a
severe score in blind and in order to find a threshold for the most discriminant proteins
selected, we resorted to a classification tree which considered both all of the patients, as
well as only the patients whose samples were collected in the first 21 days from the positive
swab (patients with negative test excluded); the data were processed by the function rpart
in R. In order to maximise classification accuracy, we controlled this aspect by changing the
control parameters named minsplit, which define the minimum number of observations
that must exist in a node in order for a split to be attempted. We define minsplit equal to 2.

All statistical analyses were performed using the open-source R software v.4.1.3
(R Foundation for Statistical Computing, Vienna, Austria).

5. Conclusions

An untargeted exploration of the plasma proteome changes associated with COVID-19
severity was conducted and the post-processing statistical elaboration returned a panel
of 29 dysregulated proteins; 17 over-expressed in severe hospitalised patients in need of
oxygen supply, and the remaining 12 in subjects with no symptoms or mild outcomes.

ftp://ftp.uniprot.org/pub/databases/uniprot/pre_release/
ftp://ftp.uniprot.org/pub/databases/uniprot/pre_release/
https://string-db.org/
https://biit.cs.ut.ee/gprofiler/gost
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The biological role and data from the literature support the molecular contextualization
of these signatures and enrich the overview of the molecular signatures connected to the
severity of this disease, from the expected increase of CRP in SEVEREs, to the modulation
of specific proteins involved in humoral and cell-mediated immune response or in the
hyper-coagulation process.

Moreover, by a supervised selection, the abundance of Fetuin-A combined with those
related to Immunoglobulin lambda-2 chain C regions and Vitronectin emerged to be a key
parameter able to distinguish severe patients from to mild ones in our cohort, with no
mismatch, independently from the time of collection, the stage of the infection, gender
and age.

The functional insight of the enriched pathways based on the deregulated proteins
describes a more intriguing and entangled molecular picture in which the overexpression
of differential proteins seems to map in pathways enriched only for severe patients (as
classical antibody-related complement activation, the adaptive immune response by BCR
signalling, innate immune response via activation and signalling of FCGR and FCERI and
the scavenging of heme from plasma) or for both SEVEREs and MILDs (as regards the
coagulation cascade and the regulation of the complement), but not only for mild patients.
In addition, focusing on the SARS-CoV-2 signalling pathway, it has been noted that the
proteins upregulated in SEVEREs refer to positively regulated virus-mediated pathways
(such as SAA1/2, CRP, HP, LRG1), while proteins overexpressed in MILDs (GSN and
HRG) are connected to processes that are expected to be negatively regulated in COVID-19,
suggesting a potentially protective role of these molecules for serious outcomes.

Taken together, these pieces of evidence likely suggest that the hyper-modulation of
critical protective nodes in MILDs or of the triggers in SEVEREs, together with the absence
of specific barrier points in SEVEREs, could drive the domino effect of biological processes
leading to the worsening of clinical manifestations.
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