745 research outputs found

    Design and Construction of Compaction Grouting for Foundation Soil Improvements

    Get PDF
    This paper presents the design and construction of compaction grouting work completed for a tank replacement project in Portland, Oregon. The project site is located along the west bank of the Willamette River. The subsurface soils at the project site were determined to be highly susceptible to soil liquefaction and lateral spreading under a design earthquake event per the building code. Compaction grouting was designed and constructed to strengthen the foundation soils supporting the new steel tank that is 115 feet in diameter and 40 feet in height. The design of the compaction grouting was completed using the design guidelines outlined in ASCE/G-I Standard 53-10. Detailed quality assurance/quality control processes were implemented during grouting operations to account for the variability in soil conditions being grouted. Real time monitoring was also completed to evaluate the ground movement induced by the grouting process and its impact to adjacent structures and critical utilities. Pre- and post-grouting CPTs were completed to verify that the intended ground densification was achieved. A hydrostatic test was also completed with the tank filled with water. The tank foundation settlement under the hydrostatic test was found to range between ¼ to ¾ inches and met the acceptance criteria per API-650 and API-653 Standards

    Evaluation of Seismic Response of a Site Class F Site Using Equivalent Linear and Nonlinear Computer Codes

    Get PDF
    Evaluation of seismic site response and development of site-specific surface response spectra has evolved in recent years through the use of both equivalent linear (EQL) and nonlinear (NL) computer codes. Before the nonlinear computer codes become popular among practitioners, equivalent linear site response analysis programs were used to develop site-specific design spectra for both soft and stiff sites. Nonlinear site response analysis is now used more routinely for projects planned on Site Class F sites. This paper presents the results of seismic response analyses completed for a Site Class F site at Grays Harbor, Washington. Both the equivalent linear (SHAKE2000) and nonlinear (D-MOD2000) computer codes were used to evaluate the site response under the maximum considered earthquake (MCE) using the guidelines set forth in 2006 International Building Code (IBC) and American Society of Civil Engineers (ASCE) 7-05 code. Comparison of surface response spectra, soil shear stress and strain at various soil layers computed using both the equivalent linear and nonlinear computer program. Conclusions regarding the limitations of the equivalent linear code and presents recommendations on the use of the nonlinear computer code in site response analysis for practitioners

    A Close Binary Star Resolved from Occultation by 87 Sylvia

    Get PDF
    The star BD+29 1748 was resolved to be a close binary from its occultation by the asteroid 87 Sylvia on 2006 December 18 UT. Four telescopes were used to observe this event at two sites separated by some 80 km apart. Two flux drops were observed at one site, whereas only one flux drop was detected at the other. From the long-term variation of Sylvia, we inferred the probable shape of the shadow during the occultation, and this in turn constrains the binary parameters: the two components of BD+29 1748 have a projected separation of 0.097" to 0.110" on the sky with a position angle 104 deg to 107 deg. The asteroid was clearly resolved with a size scale ranging from 130 to 290 km, as projected onto the occultation direction. No occultation was detected for either of the two known moonlets of 87 Sylvia.Comment: 12 pages, 4 figures, 2 tables; submitted to the PAS

    Enhancing Symbolic Execution of Heap-based Programs with Separation Logic for Test Input Generation

    Get PDF
    Symbolic execution is a well established method for test input generation. Despite of having achieved tremendous success over numerical domains, existing symbolic execution techniques for heap-based programs are limited due to the lack of a succinct and precise description for symbolic values over unbounded heaps. In this work, we present a new symbolic execution method for heap-based programs based on separation logic. The essence of our proposal is context-sensitive lazy initialization, a novel approach for efficient test input generation. Our approach differs from existing approaches in two ways. Firstly, our approach is based on separation logic, which allows us to precisely capture preconditions of heap-based programs so that we avoid generating invalid test inputs. Secondly, we generate only fully initialized test inputs, which are more useful in practice compared to those partially initialized test inputs generated by the state-of-the-art tools. We have implemented our approach as a tool, called Java StarFinder, and evaluated it on a set of programs with complex heap inputs. The results show that our approach significantly reduces the number of invalid test inputs and improves the test coverage

    N-body simulations of gravitational dynamics

    Full text link
    We describe the astrophysical and numerical basis of N-body simulations, both of collisional stellar systems (dense star clusters and galactic centres) and collisionless stellar dynamics (galaxies and large-scale structure). We explain and discuss the state-of-the-art algorithms used for these quite different regimes, attempt to give a fair critique, and point out possible directions of future improvement and development. We briefly touch upon the history of N-body simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu

    Mutations in matrix and SP1 repair the packaging specificity of a Human Immunodeficiency Virus Type 1 mutant by reducing the association of Gag with spliced viral RNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The viral genome of HIV-1 contains several secondary structures that are important for regulating viral replication. The stem-loop 1 (SL1) sequence in the 5' untranslated region directs HIV-1 genomic RNA dimerization and packaging into the virion. Without SL1, HIV-1 cannot replicate in human T cell lines. The replication restriction phenotype in the SL1 deletion mutant appears to be multifactorial, with defects in viral RNA dimerization and packaging in producer cells as well as in reverse transcription of the viral RNA in infected cells. In this study, we sought to characterize SL1 mutant replication restrictions and provide insights into the underlying mechanisms of compensation in revertants.</p> <p>Results</p> <p>HIV-1 lacking SL1 (NLΔSL1) did not replicate in PM-1 cells until two independent non-synonymous mutations emerged: G913A in the matrix domain (E42K) on day 18 postinfection and C1907T in the SP1 domain (P10L) on day 11 postinfection. NLΔSL1 revertants carrying either compensatory mutation showed enhanced infectivity in PM-1 cells. The SL1 revertants produced significantly more infectious particles per nanogram of p24 than did NLΔSL1. The SL1 deletion mutant packaged less HIV-1 genomic RNA and more cellular RNA, particularly signal recognition particle RNA, in the virion than the wild-type. NLΔSL1 also packaged 3- to 4-fold more spliced HIV mRNA into the virion, potentially interfering with infectious virus production. In contrast, both revertants encapsidated 2.5- to 5-fold less of these HIV-1 mRNA species. Quantitative RT-PCR analysis of RNA cross-linked with Gag in formaldehyde-fixed cells demonstrated that the compensatory mutations reduced the association between Gag and spliced HIV-1 RNA, thereby effectively preventing these RNAs from being packaged into the virion. The reduction of spliced viral RNA in the virion may have a major role in facilitating infectious virus production, thus restoring the infectivity of NLΔSL1.</p> <p>Conclusions</p> <p>HIV-1 evolved to overcome a deletion in SL1 and restored infectivity by acquiring compensatory mutations in the N-terminal matrix or SP1 domain of Gag. These data shed light on the functions of the N-terminal matrix and SP1 domains and suggest that both regions may have a role in Gag interactions with spliced viral RNA.</p

    First upper limits from LIGO on gravitational wave bursts

    Get PDF
    We report on a search for gravitational wave bursts using data from the first science run of the LIGO detectors. Our search focuses on bursts with durations ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than 1.6 events per day at 90% confidence level. This result is interpreted in terms of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians) as a function of their root-sum-square strain h_{rss}; typical sensitivities lie in the range h_{rss} ~ 10^{-19} - 10^{-17} strain/rtHz, depending on waveform. We discuss improvements in the search method that will be applied to future science data from LIGO and other gravitational wave detectors.Comment: 21 pages, 15 figures, accepted by Phys Rev D. Fixed a few small typos and updated a few reference

    Dimethyl sulfide production: what is the contribution of the coccolithophores?

    Get PDF

    Searching for gravitational waves from known pulsars

    Get PDF
    We present upper limits on the amplitude of gravitational waves from 28 isolated pulsars using data from the second science run of LIGO. The results are also expressed as a constraint on the pulsars' equatorial ellipticities. We discuss a new way of presenting such ellipticity upper limits that takes account of the uncertainties of the pulsar moment of inertia. We also extend our previous method to search for known pulsars in binary systems, of which there are about 80 in the sensitive frequency range of LIGO and GEO 600.Comment: Accepted by CQG for the proceeding of GWDAW9, 7 pages, 2 figure
    corecore