14,740 research outputs found

    A simple mean field equation for condensates in the BEC-BCS crossover regime

    Full text link
    We present a mean field approach based on pairs of fermionic atoms to describe condensates in the BEC-BCS crossover regime. By introducing an effective potential, the mean field equation allows us to calculate the chemical potential, the equation of states and the atomic correlation function. The results agree surprisingly well with recent quantum Monte Carlo calculations. We show that the smooth crossover from the bosonic mean field repulsion between molecules to the Fermi pressure among atoms is associated with the evolution of the atomic correlation function

    The Temporal Doppler Effect: When The Future Feels Closer Than The Past

    Get PDF
    People routinely remember events that have passed and imagine those that are yet to come. The past and the future are sometimes psychologically close ( just around the corner ) and other times psychologically distant ( ages away ). Four studies demonstrate a systematic asymmetry whereby future events are psychologically closer than past events of equivalent objective distance. When considering specific times (e.g., 1 year) or events (e.g., Valentine\u27s Day), people consistently reported that the future was closer than the past. We suggest that this asymmetry arises because the subjective experience of movement through time (whereby future events approach and past events recede) is analogous to the physical experience of movement through space. Consistent with this hypothesis, experimentally reversing the metaphorical arrow of time (by having participants move backward through virtual space) completely eliminated the past-future asymmetry. We discuss how reducing psychological distance to the future may function to prepare people for upcoming action

    Ultracold molecules: vehicles to scalable quantum information processing

    Full text link
    We describe a novel scheme to implement scalable quantum information processing using Li-Cs molecular state to entangle 6^{6}Li and 133^{133}Cs ultracold atoms held in independent optical lattices. The 6^{6}Li atoms will act as quantum bits to store information, and 133^{133}Cs atoms will serve as messenger bits that aid in quantum gate operations and mediate entanglement between distant qubit atoms. Each atomic species is held in a separate optical lattice and the atoms can be overlapped by translating the lattices with respect to each other. When the messenger and qubit atoms are overlapped, targeted single spin operations and entangling operations can be performed by coupling the atomic states to a molecular state with radio-frequency pulses. By controlling the frequency and duration of the radio-frequency pulses, entanglement can either be created or swapped between a qubit messenger pair. We estimate operation fidelities for entangling two distant qubits and discuss scalability of this scheme and constraints on the optical lattice lasers

    Intense slow beams of bosonic potassium isotopes

    Full text link
    We report on an experimental realization of a two-dimensional magneto-optical trap (2D-MOT) that allows the generation of cold atomic beams of 39K and 41K bosonic potassium isotopes. The high measured fluxes up to 1.0x10^11 atoms/s and low atomic velocities around 33 m/s are well suited for a fast and reliable 3D-MOT loading, a basilar feature for new generation experiments on Bose-Einstein condensation of dilute atomic samples. We also present a simple multilevel theoretical model for the calculation of the light-induced force acting on an atom moving in a MOT. The model gives a good agreement between predicted and measured flux and velocity values for our 2D-MOT.Comment: Updated references, 1 figure added, 10 pages, 9 figure

    SPT5 affects the rate of mRNA degradation and physically interacts with CCR4 but does not control mRNA deadenylation

    Get PDF
    The CCR4-NOT complex has been shown to have multiple roles in mRNA metabolism, including that of transcriptional elongation, mRNA transport, and nuclear exosome function, but the primary function of CCR4 and CAF1 is in the deadenylation and degradation of cytoplasmic mRNA. As previous genetic analysis supported an interaction between SPT5, known to be involved in transcriptional elongation, and that of CCR4, the physical association of SPT5 with CCR4 was examined. A two-hybrid screen utilizing the deadenylase domain of CCR4 as a bait identified SPT5 as a potential interacting protein. SPT5 at its physiological concentration was shown to immunoprecipitate CCR4 and CAF1, and in vitro purified SPT5 specifically could bind to CAF1 and the deadenylase domain of CCR4. We additionally demonstrated that mutations in SPT5 or an spt4 deletion slowed the rate of mRNA degradation, a phenotype associated with defects in the CCR4 mRNA deadenylase complex. Yet, unlike ccr4 and caf1 deletions, spt5 and spt4 defects displayed little effect on the rate of deadenylation. They also did not affect decapping or 5\u27 - 3\u27 degradation of mRNA. These results suggest that the interactions between SPT5/SPT4 and the CCR4-NOT complex are probably the consequences of effects involving nuclear events and do not involve the primary role of CCR4 in mRNA deadenylation and turnover

    Doppler cooling of gallium atoms: 2. Simulation in complex multilevel systems

    Full text link
    This paper derives a general procedure for the numerical solution of the Lindblad equations that govern the coherences arising from multicoloured light interacting with a multilevel system. A systematic approach to finding the conservative and dissipative terms is derived and applied to the laser cooling of gallium. An improved numerical method is developed to solve the time-dependent master equation and results are presented for transient cooling processes. The method is significantly more robust, efficient and accurate than the standard method and can be applied to a broad range of atomic and molecular systems. Radiation pressure forces and the formation of dynamic dark-states are studied in the gallium isotope 66Ga.Comment: 15 pages, 8 figure

    Resolution enhancement of multichannel microwave imagery from the Nimbus-7 SMMR for maritime rainfall analysis

    Get PDF
    A restoration of the 37, 21, 18, 10.7, and 6.6 GHz satellite imagery from the scanning multichannel microwave radiometer (SMMR) aboard Nimbus-7 to 22.2 km resolution is attempted using a deconvolution method based upon nonlinear programming. The images are deconvolved with and without the aid of prescribed constraints, which force the processed image to abide by partial a priori knowledge of the high-resolution result. The restored microwave imagery may be utilized to examined the distribution of precipitating liquid water in marine rain systems
    • …
    corecore