38 research outputs found

    Expanding the light absorption of poly(3-hexylthiophene) by end-functionalization with π-extended porphyrins.

    Get PDF
    Poly(3-hexylthiophene)s end-functionalized with π-extended porphyrins have been synthesized in a one-pot procedure. The polymers show a broad absorption profile extending to 700 nm and a fibrillar microstructure, which can be tuned through judicious selection of the porphyrin molar ratio

    A self-assembly toolbox for thiophene-based conjugated polyelectrolytes: surfactants, solvent and copolymerisation.

    Get PDF
    Targeted control of the aggregation, morphology and optical properties of conjugated polymers is critical for the development of high performance optoelectronic devices. Here, self-assembly approaches are used to strategically manipulate the order, conformation and spatial distribution of conjugated polymers in solution and subsequently prepared thin films. The supramolecular complex organisation of phosphonium-functionalised homo- (P3HTPMe3) and diblock (P3HT-b-P3HTPMe3) ionic conjugated polythiophenes upon solvent-mediation and co-assembly with oppositely charged surfactants is investigated. UV/Vis absorption and photoluminescence spectroscopies, small-angle neutron scattering (SANS), cryo-transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM) are used to probe the organisation and photophysical response of the aggregates formed. Subtle differences in the surfactant mole fraction and structure, as well as the solvent polarity, yield differences in the nature of the resultant homopolyelectrolyte-surfactant complexes. In contrast, only moderate structural transformations are observed for the amphiphilic diblock copolyelectrolyte, emphasising the structure "anchoring" effect of a neutral polymer block when amphiphilic copolymers are dissolved in polar solvents. These results highlight the versatility of self-assembly to access a range of nanomorphologies, which could be crucial for the design of the next generation of organic optoelectronic devices

    Vers des nouveaux systÚmes pi-conjugués pour des applications photovoltaïques

    No full text
    Among renewable energies, the sunlight has by far the highest theoretical potential to meet theworldwide need in energy. Photovoltaic devices are thus currently the subject of intense research forlow-cost conversion of sunlight into electrical power. In particular, organic photovoltaics have emergedas an interesting alternative to produce electricity due to their low manufacturing cost compared tosilicon solar cells, their mechanical flexibility and the versatility of the possible chemical structures. Inthis dissertation, we focused our research on the development of new organic -conjugated materialsfor organic solar cells applications. Two types of solar cells have been studied during this work: bulkheterojunction and dye-sensitized solar cells. The charge transfer leading to the photocurrent is usuallybased on (i) a polymer donor and a fullerene acceptor in BHJ solar cells, such as the widely studiedpoly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) materials and (ii) ametal oxide (titanium oxide) sensitized with a dye and an electrolyte in DSSCs. Despite power conversionefficiencies have reached 5 and 13 % respectively for these two types of devices, they still display severaldrawbacks that limit their commercialization. P3HT displays a narrow absorption of the solar spectrumthus limiting the conversion efficiency. To overcome this limitation, we combined P3HT withchromophores, i.e. porphyrins, having an extending absorption. Then, to ensure better charge transferand extraction within the device, a cathode interfacial layer based on cationic -conjugatedpolyelectrolytes was added, Finally, dyes extracted from the biomass (chlorophyll derivatives) weresynthesized to replace the expensive ruthenium dyes in DSSCs. Since liquid electrolytes are volatile andcorrosive, which considerably limit the DSSCs stability, solid polymer electrolytes were also developed asan alternative.Le dĂ©veloppement des Ă©nergies renouvelables est aujourd’hui devenu un enjeu mondial majeur commealternative aux Ă©nergies fossiles dans la production d'Ă©nergie. Parmi elles, l’énergie solaire estconsidĂ©rĂ©e comme la source la plus prometteuse, permettant de couvrir l’ensemble des besoinsĂ©nergĂ©tiques liĂ©s Ă  l’activitĂ© humaine. Les cellules photovoltaĂŻques les plus performantes aujourd’hui,entre 16 et 18 % en modules, sont composĂ©es de silicium, un semi-conducteur inorganique. Cependant,leur coĂ»t de production Ă©levĂ© a nĂ©cessitĂ© le dĂ©veloppement de matĂ©riaux alternatifs moins couteux.Parmi les voies explorĂ©es, les cellules solaires organiques ont Ă©mergĂ© comme une alternativeprometteuse pour produire l’électricitĂ© Ă  faible coĂ»t. Le sujet de cette thĂšse s’intĂšgre dans ce contextede recherche. Deux types de cellules solaires ont Ă©tĂ© Ă©tudiĂ©s : les cellules Ă  hĂ©tĂ©rojonction en volume(BHJ) et sensibilisĂ©es au colorant (DSSCs). Le courant photogĂ©nĂ©rĂ© repose gĂ©nĂ©ralement (i) dans lescellules BHJ, sur le transfert entre de charge entre un polymĂšre donneurs et un accepteurd’électrons(fullerĂšne), tels que le couple poly(3-hexyl)thiophĂšne (P3HT) et [6,6]-phĂ©nyl-C61-butanoate demĂ©thyle (PCBM), et (ii) dans les DSSCs, la sensibilisation de la surface d’un semi-conducteur inorganiquetel que l’oxyde de titane par un colorant et la prĂ©sence d’un Ă©lectrolyte, jouant le rĂŽle de mĂ©diateurredox. Bien qu’ayant atteint des rendements de photoconversion respectifs de 5 et 13 %, ces cellulesnĂ©cessitent des amĂ©liorations pour une commercialisation Ă  grande Ă©chelle. Tout d’abord, lesperformances des cellules BHJ Ă  base de P3HT sont considĂ©rablement limitĂ©es par sa faible absorption,ne couvrant pas la globalitĂ© du spectre solaire. Afin de pallier ce problĂšme, nous avons combinĂ© le P3HTavec des chromophores, i.e. des porphyrines, ayant une absorption plus Ă©tendue. Ensuite, pour assurerune meilleure extraction des charges au sein du dispositif, une couche interfaciale cathodique Ă  base depolyĂ©lectrolytes -conjuguĂ©s a Ă©tĂ© ajoutĂ©e. Enfin, des colorants extraits de la biomasse ont Ă©tĂ© prĂ©parĂ©safin de remplacer les colorants coĂ»teux Ă  base de ruthĂ©nium. En outre, les Ă©lectrolytes liquides Ă©tantvolatils et corrosifs, ce qui limite considĂ©rablement la stabilitĂ© des DSSCs, des Ă©lectrolytes solides Ă  basede polymĂšres ont Ă©tĂ© Ă©tudiĂ©s comme alternative

    Vers de nouveaux systĂšmes π-conjuguĂ©s pour des applications photovoltaĂŻques

    No full text
    Among renewable energies, the sunlight has by far the highest theoretical potential to meet the worldwide need in energy. Photovoltaic devices are thus currently the subject of intense research for low-cost conversion of sunlight into electrical power. In particular, organic photovoltaics have emerged as an interesting alternative to produce electricity due to their low manufacturing cost compared to silicon solar cells, their mechanical flexibility and the versatility of the possible chemical structures. In this dissertation, we focused our research on the development of new organic pi-conjugated materials for organic solar cells applications. Two types of solar cells have been studied during this work: bulk heterojunction and dye-sensitized solar cells. The charge transfer leading to the photocurrent is usually based on (i) a polymer donor and a fullerene acceptor in BHJ solar cells, such as the widely studied poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) materials and (ii) a metal oxide (titanium oxide) sensitized with a dye and an electrolyte in DSSCs. Despite power conversion efficiencies have reached 5 and 13 % respectively for these two types of devices, they still display several drawbacks that limit their commercialization. P3HT displays a narrow absorption of the solar spectrum thus limiting the conversion efficiency. To overcome this limitation, we combined P3HT with chromophores, i.e. porphyrins, having an extending absorption. Then, to ensure better charge transfer and extraction within the device, a cathode interfacial layer based on cationic pi-conjugated polyelectrolytes was added. Finally, dyes extracted from the biomass (chlorophyll a derivatives) were synthesized to replace the expensive ruthenium dyes in DSSCs. Since liquid electrolytes are volatile and corrosive, which considerably limit the DSSCs stability, solid polymer electrolytes were also developed as an alternative.Le dĂ©veloppement des Ă©nergies renouvelables est aujourd’hui devenu un enjeu mondial majeur comme alternative aux Ă©nergies fossiles dans la production d'Ă©nergie. Parmi elles, l’énergie solaire est considĂ©rĂ©e comme la source la plus prometteuse, permettant de couvrir l’ensemble des besoins Ă©nergĂ©tiques liĂ©s Ă  l’activitĂ© humaine. Les cellules photovoltaĂŻques les plus performantes aujourd’hui, entre 16 et 18 % en modules, sont composĂ©es de silicium, un semi-conducteur inorganique. Cependant, leur coĂ»t de production Ă©levĂ© a nĂ©cessitĂ© le dĂ©veloppement de matĂ©riaux alternatifs moins couteux. Parmi les voies explorĂ©es, les cellules solaires organiques ont Ă©mergĂ© comme une alternative prometteuse pour produire l’électricitĂ© Ă  faible coĂ»t. Le sujet de cette thĂšse s’intĂšgre dans ce contexte de recherche. Deux types de cellules solaires ont Ă©tĂ© Ă©tudiĂ©s : les cellules Ă  hĂ©tĂ©rojonction en volume (BHJ) et sensibilisĂ©es au colorant (DSSCs). Le courant photogĂ©nĂ©rĂ© repose gĂ©nĂ©ralement (i) dans les cellules BHJ, sur le transfert entre de charge entre un polymĂšre donneur et un accepteur d’électrons (fullerĂšne), tels que le couple poly(3-hexyl)thiophĂšne (P3HT) et [6,6]-phĂ©nyl-C61-butanoate de mĂ©thyle (PCBM), et (ii) dans les DSSCs, la sensibilisation de la surface d’un semi-conducteur inorganique tel que l’oxyde de titane par un colorant et la prĂ©sence d’un Ă©lectrolyte, jouant le rĂŽle de mĂ©diateur redox. Bien qu’ayant atteint des rendements de photoconversion respectifs de 5 et 13 %, ces cellules nĂ©cessitent des amĂ©liorations pour une commercialisation Ă  grande Ă©chelle. Tout d’abord, les performances des cellules BHJ Ă  base de P3HT sont considĂ©rablement limitĂ©es par sa faible absorption, ne couvrant pas la globalitĂ© du spectre solaire. Afin de palier ce problĂšme, nous avons combinĂ© le P3HT avec des chromophores, i.e. des porphyrines, ayant une absorption plus Ă©tendue. Ensuite, pour assurer une meilleure extraction des charges au sein du dispositif, une couche interfaciale cathodique Ă  base de polyĂ©lectrolytes pi-conjuguĂ©s a Ă©tĂ© ajoutĂ©e. Enfin, des colorants extraits de la biomasse ont Ă©tĂ© prĂ©parĂ©s afin de remplacer les colorants coĂ»teux Ă  base de ruthĂ©nium. En outre, les Ă©lectrolytes liquides Ă©tant volatils et corrosifs, ce qui limite considĂ©rablement la stabilitĂ© des DSSCs, des Ă©lectrolytes solides Ă  base de polymĂšres ont Ă©tĂ© Ă©tudiĂ©s comme alternative
    corecore