29 research outputs found

    Bases moléculaires de la sensibilité du blé tendre (Triticum aestivum) à la fusariose de l'épi causée par le champignon Fusarium graminearum

    Get PDF
    Fusarium head blight (FHB) is an important disease of cereals, particularly of wheat. It is caused by two fungal genera, the genus Fusarium and genus Microdochium. The species Fusarium graminearum is the principal agent of this disease. This disease affects not only yield and grain quality in wheat, but it causes serious health problem through the production of mycotoxins. The establishment of this disease requires the expression of plant genes (susceptibility factors) that are still unknown. To study the molecular events involved in the development of this disease in the susceptible wheat grain during its development, time course infection of five points corresponding to the main developmental stages of grain was performed. Then two approaches, proteomics and transcriptomics using DNA microarrays were used to answer to this question. Proteomic analysis identified 73 differentially regulated proteins belonging to five major functional groups while the transcriptomics data revealed 1309 genes involved in 16 distinct functional groups. Both approaches have shown that infection does not interrupt grain development, but induces significant changes in primary metabolism, mainly on the synthesis of starch and storage proteins. It also showed a link between FHB response and the grain development. This study provides new evidence necessary to understand the susceptibility response of wheat to FHB. The wheat grain susceptibility is mainly characterized by the induction of detoxifying mechanisms of mycotoxins, the diversion ofcarbon metabolism of the host by the pathogen and control of Programmed Cell Death (PCD) of plant cells. Finally, the study allowed the establishment of a list of at least 100 candidate genes potentially involved in the wheat susceptibility to FHB.La Fusariose de l’épi (FHB) est une maladie importante des cĂ©rĂ©ales et en particulier du blĂ© tendre. Elle est causĂ©e par deux genres fongiques, le genre Fusarium et le genre Microdochium. L’espĂšce Fusarium graminearum est l’agent principal de cette maladie. Elle affecte non seulement les rendements et la qualitĂ© des grains chez le blĂ©, mais elle cause un sĂ©rieux problĂšme sanitaire via la production des mycotoxines. L’établissement de cette maladie requiert l’expression de gĂšnes vĂ©gĂ©taux (facteurs de sensibilitĂ©) qui restent encore mĂ©connus. Afin d’étudier les Ă©vĂ©nements molĂ©culaires qui participent Ă  la mise en place de cette maladie sur un grain de blĂ© tendre en dĂ©veloppement et sensible au FHB, une cinĂ©tique d’infection de cinq points correspondant aux principaux stades dĂ©veloppementaux du grain a Ă©tĂ© rĂ©alisĂ©e. Ensuite, deux approches, la protĂ©omique comparĂ©e et la transcriptomique comparĂ©e Ă  l’aide de puces Ă  ADN, ont Ă©tĂ© utilisĂ©es pour rĂ©pondre Ă  ces questions. L’analyse protĂ©omique a permis d’identifier 73 protĂ©ines diffĂ©rentiellement rĂ©gulĂ©es appartenant Ă  5 grands groupes fonctionnels alors que l’approche transcriptomique a mis en Ă©vidence 1309 gĂšnes rĂ©partis dans 16 groupes fonctionnels diffĂ©rents. Ces deux approches ont montrĂ© que l’infection ne bloque pas le dĂ©veloppement du grain, mais elle induit des changements importants dans le mĂ©tabolisme primaire notamment sur la synthĂšse de l’amidon et des protĂ©ines de rĂ©serve. Elle a Ă©galement montrĂ© que la rĂ©ponse du grain au FHB est liĂ©e au stade dĂ©veloppemental du grain. Cette Ă©tude apporte de nouveaux Ă©lĂ©ments nĂ©cessaires Ă  la comprĂ©hension de la sensibilitĂ© du blĂ© tendre Ă  la Fusariose de l’épi. Cette sensibilitĂ© du grain de blĂ© se caractĂ©rise principalement par l’induction des mĂ©canismes de dĂ©toxification des mycotoxines, la mise en place des mĂ©canismes du dĂ©tournement du mĂ©tabolisme carbonĂ© de l’hĂŽte par l’agent pathogĂšne et le contrĂŽle de la mort cellulaire programmĂ©e des cellules vĂ©gĂ©tales. Enfin, l’étude a permis d’établir une liste d’au moins 100 gĂšnes candidats potentiellement impliquĂ©s dans la sensibilitĂ© du blĂ© au FHB

    Molecular basis of the wheat grain susceptibility to Fusarium head blight

    No full text
    La Fusariose de l’épi (FHB) est une maladie importante des cĂ©rĂ©ales et en particulier du blĂ© tendre. Elle est causĂ©e par deux genres fongiques, le genre Fusarium et le genre Microdochium. L’espĂšce Fusarium graminearum est l’agent principal de cette maladie. Elle affecte non seulement les rendements et la qualitĂ© des grains chez le blĂ©, mais elle cause un sĂ©rieux problĂšme sanitaire via la production des mycotoxines. L’établissement de cette maladie requiert l’expression de gĂšnes vĂ©gĂ©taux (facteurs de sensibilitĂ©) qui restent encore mĂ©connus. Afin d’étudier les Ă©vĂ©nements molĂ©culaires qui participent Ă  la mise en place de cette maladie sur un grain de blĂ© tendre en dĂ©veloppement et sensible au FHB, une cinĂ©tique d’infection de cinq points correspondant aux principaux stades dĂ©veloppementaux du grain a Ă©tĂ© rĂ©alisĂ©e. Ensuite, deux approches, la protĂ©omique comparĂ©e et la transcriptomique comparĂ©e Ă  l’aide de puces Ă  ADN, ont Ă©tĂ© utilisĂ©es pour rĂ©pondre Ă  ces questions. L’analyse protĂ©omique a permis d’identifier 73 protĂ©ines diffĂ©rentiellement rĂ©gulĂ©es appartenant Ă  5 grands groupes fonctionnels alors que l’approche transcriptomique a mis en Ă©vidence 1309 gĂšnes rĂ©partis dans 16 groupes fonctionnels diffĂ©rents. Ces deux approches ont montrĂ© que l’infection ne bloque pas le dĂ©veloppement du grain, mais elle induit des changements importants dans le mĂ©tabolisme primaire notamment sur la synthĂšse de l’amidon et des protĂ©ines de rĂ©serve. Elle a Ă©galement montrĂ© que la rĂ©ponse du grain au FHB est liĂ©e au stade dĂ©veloppemental du grain. Cette Ă©tude apporte de nouveaux Ă©lĂ©ments nĂ©cessaires Ă  la comprĂ©hension de la sensibilitĂ© du blĂ© tendre Ă  la Fusariose de l’épi. Cette sensibilitĂ© du grain de blĂ© se caractĂ©rise principalement par l’induction des mĂ©canismes de dĂ©toxification des mycotoxines, la mise en place des mĂ©canismes du dĂ©tournement du mĂ©tabolisme carbonĂ© de l’hĂŽte par l’agent pathogĂšne et le contrĂŽle de la mort cellulaire programmĂ©e des cellules vĂ©gĂ©tales. Enfin, l’étude a permis d’établir une liste d’au moins 100 gĂšnes candidats potentiellement impliquĂ©s dans la sensibilitĂ© du blĂ© au FHB.Fusarium head blight (FHB) is an important disease of cereals, particularly of wheat. It is caused by two fungal genera, the genus Fusarium and genus Microdochium. The species Fusarium graminearum is the principal agent of this disease. This disease affects not only yield and grain quality in wheat, but it causes serious health problem through the production of mycotoxins. The establishment of this disease requires the expression of plant genes (susceptibility factors) that are still unknown. To study the molecular events involved in the development of this disease in the susceptible wheat grain during its development, time course infection of five points corresponding to the main developmental stages of grain was performed. Then two approaches, proteomics and transcriptomics using DNA microarrays were used to answer to this question. Proteomic analysis identified 73 differentially regulated proteins belonging to five major functional groups while the transcriptomics data revealed 1309 genes involved in 16 distinct functional groups. Both approaches have shown that infection does not interrupt grain development, but induces significant changes in primary metabolism, mainly on the synthesis of starch and storage proteins. It also showed a link between FHB response and the grain development. This study provides new evidence necessary to understand the susceptibility response of wheat to FHB. The wheat grain susceptibility is mainly characterized by the induction of detoxifying mechanisms of mycotoxins, the diversion ofcarbon metabolism of the host by the pathogen and control of Programmed Cell Death (PCD) of plant cells. Finally, the study allowed the establishment of a list of at least 100 candidate genes potentially involved in the wheat susceptibility to FHB

    Bases moléculaires de la sensibilité du blé tendre (<em>Triticum aestivum</em>) à la fusariose de l'épi causée par le champignon <em>Fusarium graminearum</em>

    No full text
    Co-encadrant : Ludovic BonhommeFusarium head blight (FHB) is an important disease of cereals, particularly of wheat. It is caused by two fungal genera, the genus Fusarium and genus Microdochium. The species Fusarium graminearum is the principal agent of this disease. This disease affects not only yield and grain quality in wheat, but it causes serious health problem through the production of mycotoxins. The establishment of this disease requires the expression of plant genes (susceptibility factors) that are still unknown. To study the molecular events involved in the development of this disease in the susceptible wheat grain during its development, time course infection of five points corresponding to the main developmental stages of grain was performed. Then two approaches, proteomics and transcriptomics using DNA microarrays were used to answer to this question. Proteomic analysis identified 73 differentially regulated proteins belonging to five major functional groups while the transcriptomics data revealed 1309 genes involved in 16 distinct functional groups. Both approaches have shown that infection does not interrupt grain development, but induces significant changes in primary metabolism, mainly on the synthesis of starch and storage proteins. It also showed a link between FHB response and the grain development. This study provides new evidence necessary to understand the susceptibility response of wheat to FHB. The wheat grain susceptibility is mainly characterized by the induction of detoxifying mechanisms of mycotoxins, the diversion ofcarbon metabolism of the host by the pathogen and control of Programmed Cell Death (PCD) of plant cells. Finally, the study allowed the establishment of a list of at least 100 candidate genes potentially involved in the wheat susceptibility to FHB.La Fusariose de l’épi (FHB) est une maladie importante des cĂ©rĂ©ales et en particulier du blĂ© tendre. Elle est causĂ©e par deux genres fongiques, le genre Fusarium et le genre Microdochium. L’espĂšce Fusarium graminearum est l’agent principal de cette maladie. Elle affecte non seulement les rendements et la qualitĂ© des grains chez le blĂ©, mais elle cause un sĂ©rieux problĂšme sanitaire via la production des mycotoxines. L’établissement de cette maladie requiert l’expression de gĂšnes vĂ©gĂ©taux (facteurs de sensibilitĂ©) qui restent encore mĂ©connus. Afin d’étudier les Ă©vĂ©nements molĂ©culaires qui participent Ă  la mise en place de cette maladie sur un grain de blĂ© tendre en dĂ©veloppement et sensible au FHB, une cinĂ©tique d’infection de cinq points correspondant aux principaux stades dĂ©veloppementaux du grain a Ă©tĂ© rĂ©alisĂ©e. Ensuite, deux approches, la protĂ©omique comparĂ©e et la transcriptomique comparĂ©e Ă  l’aide de puces Ă  ADN, ont Ă©tĂ© utilisĂ©es pour rĂ©pondre Ă  ces questions. L’analyse protĂ©omique a permis d’identifier 73 protĂ©ines diffĂ©rentiellement rĂ©gulĂ©es appartenant Ă  5 grands groupes fonctionnels alors que l’approche transcriptomique a mis en Ă©vidence 1309 gĂšnes rĂ©partis dans 16 groupes fonctionnels diffĂ©rents. Ces deux approches ont montrĂ© que l’infection ne bloque pas le dĂ©veloppement du grain, mais elle induit des changements importants dans le mĂ©tabolisme primaire notamment sur la synthĂšse de l’amidon et des protĂ©ines de rĂ©serve. Elle a Ă©galement montrĂ© que la rĂ©ponse du grain au FHB est liĂ©e au stade dĂ©veloppemental du grain. Cette Ă©tude apporte de nouveaux Ă©lĂ©ments nĂ©cessaires Ă  la comprĂ©hension de la sensibilitĂ© du blĂ© tendre Ă  la Fusariose de l’épi. Cette sensibilitĂ© du grain de blĂ© se caractĂ©rise principalement par l’induction des mĂ©canismes de dĂ©toxification des mycotoxines, la mise en place des mĂ©canismes du dĂ©tournement du mĂ©tabolisme carbonĂ© de l’hĂŽte par l’agent pathogĂšne et le contrĂŽle de la mort cellulaire programmĂ©e des cellules vĂ©gĂ©tales. Enfin, l’étude a permis d’établir une liste d’au moins 100 gĂšnes candidats potentiellement impliquĂ©s dans la sensibilitĂ© du blĂ© au FHB

    In silico prediction of the secretome from the invasive neurotoxic marine dinoflagellate Alexandrium catenella

    No full text
    WOS:000474226700010Alexandrium catenella, a marine dinoflagellate responsible for harmful algal blooms (HABs), proliferates with greater frequency, distribution and intensity, in disturbed marine coastal ecosystems. The proteins secreted into seawater may play a crucial role in maintaining this dinoflagellate in these ecosystems, but this possibility has never been investigated before. In this study, the A. catenella secretome was predicted from its transcriptome by combining several bioinformatics tools. Our results predict a secretome of 2 779 proteins, among which 79% contain less than 500 amino acids, suggesting that most secreted proteins are short in length. The predicted secretome includes 963 proteins (35%) with Pfam domains: 773 proteins with one Pfam domain and 190 proteins with two or more Pfam domains. Their functional annotation showed that they are mainly involved in (i) proteolysis, (ii) stress responses and (iii) primary metabolism. In addition, 47% of the secreted proteins appear to be enzymes, primarily peptidases, known to be biologically active in the extracellular medium during stress responses. Finally, this study provides a wealth of candidates of proteins secreted by A. catenella, which may interact with the marine environment and help this dinoflagellate develop in various environmental conditions

    Intraspecific variability in membrane proteome, cell growth, and morphometry of the invasive marine neurotoxic dinoflagellate Alexandrium pacificum grown in metal-contaminated conditions

    No full text
    International audienceOver the past decades, the occurrence, distribution and intensity of harmful algal blooms involving the dinofla-gellate Alexandrium pacificum have increased in marine coastal areas disturbed by anthropogenic inputs. This in-vasive species produces saxitoxin, which causes the paralytic shellfish poisoning syndrome in humans upon consumption of contaminated seafood. Blooms of A. pacificum have been reported in metal-contaminated coastal ecosystems, suggesting some ability of these microorganisms to adapt to and/or resist in metal stress conditions. This study seeks to characterize the modifications in membrane proteomes (by 2-D electrophoresis coupled to LC-MS/MS), cell growth and morphometry (measured with an inverted microscope), in response to metal stress (addition of Zn2+,Pb2+,Cu2+ and Cd2+), in two Mediterranean A pacOcum strains: SG C10-3 and TAR C5-4F, re-spectively isolated from the Santa Giusta Lagoon (Sardinia, Italy) and from the Tarragona seaport (Spain), both metal-contaminated ecosystems. In the SG C10-3 cultures grown in a metal cocktail, cell growth was significantly delayed, and cell size increased (22% of 37.5 mu m cells after 25 days of growth). Conversely, no substantial change was observed for cell growth or cell size in the TAR C5-4F cultures grown in a metal cocktail (P> 0.10), thus in-dicating intraspecific variability in the responses of A. pacificum strains to metal contamination. Regardless of the conditions tested, the total number of proteins constituting the membrane proteome was significantly higher for TAR C5-4F than for SG C10-3, which may help TAR C5-4F to thrive better in contaminated conditions. For both strains, the total number of proteins constituting the membrane proteomes was significantly lower in response to metal stress (29% decrease in the SG C10-3 proteome: 82 +/- 12 proteins for controls, and 58 +/- 12 in metalcontaminated cultures; 17% decrease in the TAR C5-4F proteome: 101 +/- 8 proteins for controls, and 84 +/- 5 in metal-contaminated cultures). Moreover, regardless of the strain, proteins with significantly modified expression in response to stress were mainly down-regulated (representing 45% of the proteome for SG C10-3 and 38% for TAR C5-4F), dearly showing the harmful effects of the metals. Protein down-regulation may affect cell transport (actin and phospholipid scramblase in SG C10-3), photosynthesis (RUBISCO in SG C10-3, light-harvesting protein in TAR C5-4F, and high-CO2-inducing periplasmic protein in both strains), and finally energy metabolism (ATP synthase in both strains). However, other modifications in protein expression may confer to these A. pacificum strains a capacity for adaptation and/or resistance to metal stress conditions, for example by (i) limiting the metal entry through the plasma membrane of the SG C10-3 cells (via the down-regulation of scramblase) and/or (ii) reducing the oxidative stress generated by metals in SG C10-3 and TAR C5-4F cells (due to down-regulation of ATP-synthase)

    Physiological and proteomic responses of a mediterranean strain of the marine toxic invasive dinoflagellate Alexandrium catenella exposed to a polymetallic stress

    No full text
    International audienceAlexandrium catenella est un dinoflagellĂ© marin invasif impliquĂ© dans les phĂ©nomĂšnes d'efflorescences massives toxiques (Harmful Algal Blooms ou HABs). Les HABs sont notamment observĂ©s dans des Ă©cosystĂšmes marins cĂŽtiers perturbĂ©s par les activitĂ©s anthropiques, avec des frĂ©quences, des distributions et des intensitĂ©s croissantes. A. catenella produit des phycotoxines (saxitoxine et dĂ©rivĂ©s) responsables de graves intoxications, pouvant conduire jusqu'Ă  la mort, chez l'ĂȘtre humain ayant consommĂ© des fruits de mer contaminĂ©s (Paralytic Shellfish Poisoning ou PSP). Or, des efflorescences de ce dinoflagellĂ© ont lieu dans des Ă©cosystĂšmes soumis Ă  des contaminations par divers Ă©lĂ©ments traces mĂ©talliques(ETMs) (Étang de Thau : Eric Abadie, communication personnelle ; Rade de Toulon : Jean et al., 2006), ce qui suggĂšre une certaine capacitĂ© de rĂ©sistance et/ou d'adaptation d'A catenella aux stress mĂ©talliques, laquelle a peu Ă©tĂ© Ă©tudiĂ©e (Jean et al., 2017 ; Jean et al., en prĂ©paration). Dans cette Ă©tude, la croissance, la morphomĂ©trie, les profils toxiniques et les rĂ©ponses protĂ©omiques de cellules d'A. catenella exposĂ©es Ă  un cocktail polymĂ©tallique (Cu, Pb, Zn, Cd) ont Ă©tĂ© analysĂ©s. L'approche protĂ©omique permet de comprendre les mĂ©canismes de rĂ©sistance/d'adaptation dĂ©veloppĂ©s par des organismes soumis Ă  des stress environnementaux, grĂące Ă  des protĂ©ines de stress dont ils modifient l'expression au sein de voies mĂ©taboliques spĂ©cifiques. Cette Ă©tude vise donc Ă  (i) identifier les protĂ©ines de stress dont l'expression est modifiĂ©e par A.catenella en rĂ©ponse Ă  une contamination polymĂ©tallique, (ii) analyser la contribution de ces protĂ©ines Ă  des mĂ©canismes cellulaires spĂ©cifiques pouvant expliquer le dĂ©veloppement/maintien de ce dinoflagellĂ© dans des Ă©cosystĂšmes contaminĂ©s par les ETMs, (iii) mettre en Ă©vidence des biomarqueursprotĂ©omiques de rĂ©sistance/d'adaptation d'A. catenella aux conditions de stress mĂ©talliques. Les rĂ©sultats obtenus peuvent contribuer Ă  comprendre la capacitĂ© de ce dinoflagellĂ© Ă  coloniser et Ă  se maintenir dans des Ă©cosystĂšmes marins cĂŽtiers fortement anthropisĂ©s.Mots clĂ©s Alexandrium catenella, biomarqueurs, phycotoxines, protĂ©omique, stress mĂ©talliqu

    A proteomics survey on wheat susceptibility to Fusarium head blight during grain development.

    No full text
    The mycotoxigenic fungal species Fusarium graminearum is able to attack several important cereal crops, such as wheat and barley. By causing Fusarium Head Blight (FHB) disease, F. graminearum induces yield and quality losses and poses a public health concern due to in planta mycotoxin production. The molecular and physiological plant responses to FHB, and the cellular biochemical pathways used by F. graminearum to complete its infectious process remain still unknown. In this study, a proteomics approach, combining 2D-gel approach and mass spectrometry, has been used to determine the specific protein patterns associated with the development of the fungal infection during grain growth on susceptible wheat. Our results reveal that F. graminearum infection does not deeply alter the grain proteome and does not significantly disturb the first steps of grain ontogeny but impacts molecular changes during the grain filling stage (impact on starch synthesis and storage proteins). The differentially regulated proteins identified were mainly involved in stress and defence mechanisms, primary metabolism, and main cellular processes such as signalling and transport. Our survey suggests that F. graminearum could take advantage of putative susceptibility factors closely related to grain development processes and thus provide new insights into key molecular events controlling the susceptible response to FHB in wheat grains
    corecore