9 research outputs found

    COSMIC: An Ethernet-based Commensal, Multimode Digital Backend on the Karl G. Jansky Very Large Array for the Search for Extraterrestrial Intelligence

    Full text link
    The primary goal of the search for extraterrestrial intelligence (SETI) is to gain an understanding of the prevalence of technologically advanced beings (organic or inorganic) in the Galaxy. One way to approach this is to look for technosignatures: remotely detectable indicators of technology, such as temporal or spectral electromagnetic emissions consistent with an artificial source. With the new Commensal Open-Source Multimode Interferometer Cluster (COSMIC) digital backend on the Karl G. Jansky Very Large Array (VLA), we aim to conduct a search for technosignatures that is significantly more comprehensive, more sensitive, and more efficient than previously attempted. The COSMIC system is currently operational on the VLA, recording data, and designed with the flexibility to provide user-requested modes. This paper describes the hardware system design, the current software pipeline, and plans for future development.Comment: 30 pages, 17 figures. Accepted for publication in A

    The Rapid ASKAP Continuum Survey I: Design and First Results

    Full text link
    The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia, and will cover the full ASKAP band of 700−1800700-1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey (NVSS) and Sydney University Molonglo Sky Survey (SUMSS) radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with ∼15\sim 15 arcsecond resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination +41∘+41^\circ made over a 288 MHz band centred at 887.5 MHz.Comment: 24 pages, 17 figures, 4 tables. For associated data see https://data.csiro.au/collections/domain/casdaObservation/results/PRAS110%20-%20The%20Rapid%20ASKAP%20Continuu

    Forging a path to a better normal for conferences and collaboration

    No full text
    The 2020 COVID-19 pandemic forced a string of cancelled conferences, causing many organizers to shift meetings online, with mixed success. Seizing the opportunity, a group of researchers came together to rethink how the conference experience and collaboration in general can be improved in a more virtual-centric future

    A Search for High-Mass Stars Forming in Isolation using CORNISH and ATLASGAL

    No full text
    Theoretical models of high-mass star formation lie between two extreme scenarios. At one extreme, all the mass comes from an initially gravitationally bound core. At the other extreme, the majority of the mass comes from cluster scale gas, which lies far outside the initial core boundary. One way to unambiguously show high-mass stars can assemble their gas through the former route would be to find a high-mass star forming in isolation. Making use of recently available CORNISH and ATLASGAL Galactic plane survey data, we develop sample selection criteria to try and find such an object. From an initial list of approximately 200 sources, we identify the high-mass star-forming region G13.384 + 0.064 as the most promising candidate. The region contains a strong radio continuum source, that is powered by an early B-type star. The bolometric luminosity, derived from infrared measurements, is consistent with this. However, sub-millimetre continuum emission, measured in ATLASGAL, as well as dense gas tracers, such as HCO+(3–2) and N2H+(3–2) indicate that there is less than ~ 100 M? of material surrounding this star. We conclude that this region is indeed a promising candidate for a high-mass star forming in isolation

    The rapid ASKAP continuum survey I : design and first results

    No full text
    The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700-1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with ∼15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination +41◦ made over a 288-MHz band centred at 887.5 MHz

    Science with the Murchison Widefield Array : Phase l results and Phase II opportunities

    No full text
    The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80-300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories
    corecore