4,975 research outputs found

    PRDM14 is expressed in germ cell tumors with constitutive overexpression altering human germline differentiation and proliferation.

    Get PDF
    Germ cell tumors (GCTs) are a heterogeneous group of tumors occurring in gonadal and extragonadal locations. GCTs are hypothesized to arise from primordial germ cells (PGCs), which fail to differentiate. One recently identified susceptibility loci for human GCT is PR (PRDI-BF1 and RIZ) domain proteins 14 (PRDM14). PRDM14 is expressed in early primate PGCs and is repressed as PGCs differentiate. To examine PRDM14 in human GCTs we profiled human GCT cell lines and patient samples and discovered that PRDM14 is expressed in embryonal carcinoma cell lines, embryonal carcinomas, seminomas, intracranial germinomas and yolk sac tumors, but is not expressed in teratomas. To model constitutive overexpression in human PGCs, we generated PGC-like cells (PGCLCs) from human pluripotent stem cells (PSCs) and discovered that elevated expression of PRDM14 does not block early PGC formation. Instead, we show that elevated PRDM14 in PGCLCs causes proliferation and differentiation defects in the germline

    The Carboxyl-Terminal Amino Acids Render Pro-Human LC3B Migration Similar to Lipidated LC3B in SDS-PAGE

    Get PDF
    LC3 is widely used marker for macroautophagy assays. After translation pro-LC3 is processed by Atg4 to expose C-terminal glycine residue for downstream conjugation reactions to accomplish the conversion of LC3-I to LC3-II. SDS-PAGE based Western blot (Wb) is generally utilized to quantify LC3-II levels where the LC3-I band migrates slower than LC3-II. We found that pro-human LC3B migrated at similar rate as LC3B-II in SDS-PAGE. The carboxyl-terminal five amino acids, particularly Lysine122 and Leucine123 of human LC3B play a major role in the faster migration of unprocessed LC3B, rendering it indistinguishable from LC3B-II in Wb assays. The unique faster migration of unprocessed LC3B than LC3B-I is also revealed in mouse LC3B, rat LC3B and rat LC3 but not in human LC3C. Our findings for the first time define pro-LC3 migration patterns for LC3 family member from human, mouse and rat species in SDS-PAGE. These findings provide a reference for pro-LC3 band patterns when Atg4 function is inhibited. © 2013 Wang et al

    Space Transportation System Availability Relationships to Life Cycle Cost

    Get PDF
    Future space transportation architectures and designs must be affordable. Consequently, their Life Cycle Cost (LCC) must be controlled. For the LCC to be controlled, it is necessary to identify all the requirements and elements of the architecture at the beginning of the concept phase. Controlling LCC requires the establishment of the major operational cost drivers. Two of these major cost drivers are reliability and maintainability, in other words, the system's availability (responsiveness). Potential reasons that may drive the inherent availability requirement are the need to control the number of unique parts and the spare parts required to support the transportation system's operation. For more typical space transportation systems used to place satellites in space, the productivity of the system will drive the launch cost. This system productivity is the resultant output of the system availability. Availability is equal to the mean uptime divided by the sum of the mean uptime plus the mean downtime. Since many operational factors cannot be projected early in the definition phase, the focus will be on inherent availability which is equal to the mean time between a failure (MTBF) divided by the MTBF plus the mean time to repair (MTTR) the system. The MTBF is a function of reliability or the expected frequency of failures. When the system experiences failures the result is added operational flow time, parts consumption, and increased labor with an impact to responsiveness resulting in increased LCC. The other function of availability is the MTTR, or maintainability. In other words, how accessible is the failed hardware that requires replacement and what operational functions are required before and after change-out to make the system operable. This paper will describe how the MTTR can be equated to additional labor, additional operational flow time, and additional structural access capability, all of which drive up the LCC. A methodology will be presented that provides the decision makers with the understanding necessary to place constraints on the design definition. This methodology for the major drivers will determine the inherent availability, safety, reliability, maintainability, and the life cycle cost of the fielded system. This methodology will focus on the achievement of an affordable, responsive space transportation system. It is the intent of this paper to not only provide the visibility of the relationships of these major attribute drivers (variables) to each other and the resultant system inherent availability, but also to provide the capability to bound the variables, thus providing the insight required to control the system's engineering solution. An example of this visibility is the need to provide integration of similar discipline functions to allow control of the total parts count of the space transportation system. Also, selecting a reliability requirement will place a constraint on parts count to achieve a given inherent availability requirement, or require accepting a larger parts count with the resulting higher individual part reliability requirements. This paper will provide an understanding of the relationship of mean repair time (mean downtime) to maintainability (accessibility for repair), and both mean time between failure (reliability of hardware) and the system inherent availability

    ISRU Propellant Selection for Space Exploration Vehicles

    Get PDF
    Chemical propulsion remains the only viable solution as technically matured technology for the near term human space transportation to Lunar and Mars. Current mode of space travel requires us to "take everything we will need", including propellant for the return trip. Forcing the mission designers to carry propellant for the return trip limits payload mass available for mission operations and results in a large and costly (and often unaffordable) design. Producing propellant via In-Situ Resource Utilization (ISRU) will enable missions with chemical propulsion by the "refueling" of return-trip propellant. It will reduce vehicle propellant mass carrying requirement by over 50%. This mass reduction can translates into increased payload to enhance greater mission capability, reduces vehicle size, weight and cost. It will also reduce size of launch vehicle fairing size as well as number of launches for a given space mission and enables exploration missions with existing chemical propulsion. Mars remains the ultimate destination for Human Space Exploration within the Solar System. The Mars atmospheric consist of 95% carbon dioxide (CO2) and the presence of Ice (water) was detected on Mars surfaces. This presents a basic chemical building block for the ISRU propellant manufacturing. However, the rationale for the right propellant to produce via ISRU appears to be limited to the perception of "what we can produce" as oppose to "what is the right propellant". Methane (CH4) is often quoted as a logical choice for Mars ISRU propellant, however; it is believed that there are better alternatives available that can result in a better space transportation architecture. A system analysis is needed to determine on what is the right propellant choice for the exploration vehicle. This paper examines the propellant selection for production via ISRU method on Mars surfaces. It will examine propellant trades for the exploration vehicle with resulting impact on vehicle performance, size, and on launch vehicles. It will investigate propellant manufacturing techniques that will be applicable on Mars surfaces and address related issues on storage, transfer, and safety. Finally, it will also address the operability issues associated with the impact of propellant selection on ground processing and launch vehicle integration

    "Super Gene Set" Causal Relationship Discovery from Functional Genomics Data

    Get PDF
    In this article, we present a computational framework to identify "causal relationships" among super gene sets. For "causal relationships," we refer to both stimulatory and inhibitory regulatory relationships, regardless of through direct or indirect mechanisms. For super gene sets, we refer to "pathways, annotated lists, and gene signatures," or PAGs. To identify causal relationships among PAGs, we extend the previous work on identifying PAG-to-PAG regulatory relationships by further requiring them to be significantly enriched with gene-to-gene co-expression pairs across the two PAGs involved. This is achieved by developing a quantitative metric based on PAG-to-PAG Co-expressions (PPC), which we use to infer the likelihood that PAG-to-PAG relationships under examination are causal-either stimulatory or inhibitory. Since true causal relationships are unknown, we approximate the overall performance of inferring causal relationships with the performance of recalling known r-type PAG-to-PAG relationships from causal PAG-to-PAG inference, using a functional genomics benchmark dataset from the GEO database. We report the area-under-curve (AUC) performance for both precision and recall being 0.81. By applying our framework to a myeloid-derived suppressor cells (MDSC) dataset, we further demonstrate that this framework is effective in helping build multi-scale biomolecular systems models with new insights on regulatory and causal links for downstream biological interpretations

    TFAP2C regulates transcription in human naive pluripotency by opening enhancers.

    Get PDF
    Naive and primed pluripotent human embryonic stem cells bear transcriptional similarity to pre- and post-implantation epiblast and thus constitute a developmental model for understanding the pluripotent stages in human embryo development. To identify new transcription factors that differentially regulate the unique pluripotent stages, we mapped open chromatin using ATAC-seq and found enrichment of the activator protein-2 (AP2) transcription factor binding motif at naive-specific open chromatin. We determined that the AP2 family member TFAP2C is upregulated during primed to naive reversion and becomes widespread at naive-specific enhancers. TFAP2C functions to maintain pluripotency and repress neuroectodermal differentiation during the transition from primed to naive by facilitating the opening of enhancers proximal to pluripotency factors. Additionally, we identify a previously undiscovered naive-specific POU5F1 (OCT4) enhancer enriched for TFAP2C binding. Taken together, TFAP2C establishes and maintains naive human pluripotency and regulates OCT4 expression by mechanisms that are distinct from mouse

    The Need for Technology Maturity of Any Advanced Capability to Achieve Better Life Cycle Cost (LCC)

    Get PDF
    Programs such as space transportation systems are developed and deployed only rarely, and they have long development schedules and large development and life cycle costs (LCC). They have not historically had their LCC predicted well and have only had an effort to control the DDT&E phase of the programs. One of the factors driving the predictability, and thus control, of the LCC of a program is the maturity of the technologies incorporated in the program. If the technologies incorporated are less mature (as measured by their Technology Readiness Level - TRL), then the LCC not only increases but the degree of increase is difficult to predict. Consequently, new programs avoid incorporating technologies unless they are quite mature, generally TRL greater than or equal to 7 (system prototype demonstrated in a space environment) to allow better predictability of the DDT&E phase costs unless there is no alternative. On the other hand, technology development programs rarely develop technologies beyond TRL 6 (system/subsystem model or prototype demonstrated in a relevant environment). Currently the lack of development funds beyond TRL 6 and the major funding required for full scale development leave little or no funding available to prototype TRL 6 concepts so that hardware would be in the ready mode for safe, reliable and cost effective incorporation. The net effect is that each new program either incorporates little new technology or has longer development schedules and costs, and higher LCC, than planned. This paper presents methods to ensure that advanced technologies are incorporated into future programs while providing a greater accuracy of predicting their LCC. One method is having a dedicated organization to develop X-series vehicles or separate prototypes carried on other vehicles. The question of whether such an organization should be independent of NASA and/or have an independent funding source is discussed. Other methods are also discussed. How to make the choice of which technologies to pursue to the prototype level is also discussed since, to achieve better LCC, first the selection of the appropriate technologies
    • …
    corecore