1,225 research outputs found

    Optimal sequencing of a set of positive numbers with the variance of the sequence's partial sums maximized

    Full text link
    We consider the problem of sequencing a set of positive numbers. We try to find the optimal sequence to maximize the variance of its partial sums. The optimal sequence is shown to have a beautiful structure. It is interesting to note that the symmetric problem which aims at minimizing the variance of the same partial sums is proved to be NP-complete in the literature.Comment: 12 pages;Accepted for publication in Optimization Lette

    Low-Energy Photodisintegration of the Deuteron and Big-Bang Nucleosynthesis

    Get PDF
    The photon analyzing power for the photodisintegration of the deuteron was measured for seven gamma-ray energies between 2.39 and 4.05 MeV using the linearly polarized gamma-ray beam of the High-Intensity Gamma-ray Source at the Duke Free-Electron Laser Laboratory. The data provide a stringent test of theoretical calculations for the inverse reaction, the neutron-proton radiative capture reaction at energies important for Big-Bang Nucleosynthesis. Our data are in excellent agreement with potential model and effective field theory calculations. Therefore, the uncertainty in the baryon density obtained from Big-Bang Nucleosynthesis can be reduced at least by 20%.Comment: 5 pages, 5 figure

    Bi-local baryon interpolating fields with two flavours

    Full text link
    We construct bi-local interpolating field operators for baryons consisting of three quarks with two flavors, assuming good isospin symmetry. We use the restrictions following from the Pauli principle to derive relations/identities among the baryon operators with identical quantum numbers. Such relations that follow from the combined spatial, Dirac, color, and isospin Fierz transformations may be called the (total/complete) Fierz identities. These relations reduce the number of independent baryon operators with any given spin and isospin. We also study the Abelian and non-Abelian chiral transformation properties of these fields and place them into baryon chiral multiplets. Thus we derive the independent baryon interpolating fields with given values of spin (Lorentz group representation), chiral symmetry (UL(2)×UR(2)U_L(2) \times U_R(2) group representation) and isospin appropriate for the first angular excited states of the nucleon.Comment: 15 pages, 4 tables, accepted by EPJ

    Analysis of Faraday effect in multimode tellurite glass optical fiber for magneto-optical sensing and monitoring applications

    Get PDF
    The design and fabrication of a tellurite glass multimode optical fiber for magneto-optical applications are presented and discussed. The analysis of the polarization shows that an optical beam, linearly polarized at the fiber input, changes to elliptically polarized with an ellipticity of 1∶4.5 after propagating down the fiber. However, the elliptical distribution remains unchanged with or without an applied magnetic field, demonstrating that no circular dichroism occurs within the fiber. The Verdet constant of the tellurite glass in the fiber is measured to be 28 0.5 rad · T ·m−1, diverging by less than 3% from the Verdet constant found on the same glass composition in bulk form. These results demonstrate the feasibility to develop reliable tellurite glass fibers by the preform drawing method for magneto-optical applications

    Long range forces and limits on unparticle interactions

    Get PDF
    Couplings between standard model particles and unparticles from a nontrivial scale invariant sector can lead to long range forces. If the forces couple to quantities such as baryon or lepton (electron) number, stringent limits result from tests of the gravitational inverse square law. These limits are much stronger than from collider phenomenology and astrophysics.Comment: 7 pages, revtex; v2 minor changes and added reference

    Some Issues in a Gauge Model of Unparticles

    Full text link
    We address in a recent gauge model of unparticles the issues that are important for consistency of a gauge theory, i.e., unitarity and Ward identity of physical amplitudes. We find that non-integrable singularities arise in physical quantities like cross section and decay rate from gauge interactions of unparticles. We also show that Ward identity is violated due to the lack of a dispersion relation for charged unparticles although the Ward-Takahashi identity for general Green functions is incorporated in the model. A previous observation that the unparticle's (with scaling dimension d) contribution to the gauge boson self-energy is a factor (2-d) of the particle's has been extended to the Green function of triple gauge bosons. This (2-d) rule may be generally true for any point Green functions of gauge bosons. This implies that the model would be trivial even as one that mimics certain dynamical effects on gauge bosons in which unparticles serve as an interpolating field.Comment: v1:16 pages, 3 figures. v2: some clarifications made and presentation improved, calculation and conclusion not modified; refs added and updated. Version to appear in EPJ

    Effect of Small Amounts of B and C Additions on Glass Formation and Mechanical Properties of a Zr-Base Alloy

    Get PDF
    The effect of B and C additions up to 0.4 at. % on glass formation and mechanical properties of a Zr-base alloy Vitreloy 105 was studied using various techniques. All alloys were prepared by arc melting and drop casting. Boron additions increase the glass forming ability by lowering Tm and increasing Tg. Carbon additions only lower Tm, but do not affect Tg. B and C additions occupy free space and do not harden the glass phase

    Exactly solvable model of quantum diffusion

    Get PDF
    We study the transport property of diffusion in a finite translationally invariant quantum subsystem described by a tight-binding Hamiltonian with a single energy band and interacting with its environment by a coupling in terms of correlation functions which are delta-correlated in space and time. For weak coupling, the time evolution of the subsystem density matrix is ruled by a quantum master equation of Lindblad type. Thanks to the invariance under spatial translations, we can apply the Bloch theorem to the subsystem density matrix and exactly diagonalize the time evolution superoperator to obtain the complete spectrum of its eigenvalues, which fully describe the relaxation to equilibrium. Above a critical coupling which is inversely proportional to the size of the subsystem, the spectrum at given wavenumber contains an isolated eigenvalue describing diffusion. The other eigenvalues rule the decay of the populations and quantum coherences with decay rates which are proportional to the intensity of the environmental noise. On the other hand, an analytical expression is obtained for the dispersion relation of diffusion. The diffusion coefficient is proportional to the square of the width of the energy band and inversely proportional to the intensity of the environmental noise because diffusion results from the perturbation of quantum tunneling by the environmental fluctuations in this model. Diffusion disappears below the critical coupling.Comment: Submitted to J. Stat. Phy

    Renormalization group and isochronous oscillations

    Full text link
    We show how the condition of isochronicity can be studied for two dimensional systems in the renormalization group (RG) context. We find a necessary condition for the isochronicity of the Cherkas and another class of cubic systems. Our conditions are satisfied by all the cases studied recently by Bardet et al \cite{bard} and Ghose Choudhury and Guh

    Wang-Landau study of the 3D Ising model with bond disorder

    Full text link
    We implement a two-stage approach of the Wang-Landau algorithm to investigate the critical properties of the 3D Ising model with quenched bond randomness. In particular, we consider the case where disorder couples to the nearest-neighbor ferromagnetic interaction, in terms of a bimodal distribution of strong versus weak bonds. Our simulations are carried out for large ensembles of disorder realizations and lattices with linear sizes LL in the range L=8−64L=8-64. We apply well-established finite-size scaling techniques and concepts from the scaling theory of disordered systems to describe the nature of the phase transition of the disordered model, departing gradually from the fixed point of the pure system. Our analysis (based on the determination of the critical exponents) shows that the 3D random-bond Ising model belongs to the same universality class with the site- and bond-dilution models, providing a single universality class for the 3D Ising model with these three types of quenched uncorrelated disorder.Comment: 7 pages, 7 figures, to be published in Eur. Phys. J.
    • …
    corecore